RESUMO
InGaAs/InP single-photon detectors (SPDs) are widely used for near-infrared photon counting in practical applications. Photon detection efficiency (PDE) is one of the most important parameters for SPD characterization, and therefore, increasing PDE consistently plays a central role in both industrial development and academic research. Here, we present the implementation of high-frequency gating InGaAs/InP SPDs with a PDE as high as 60% at 1550 nm. On one hand, we optimize the structure design and device fabrication of InGaAs/InP single-photon avalanche diodes with an additional dielectric-metal reflection layer to relatively increase the absorption efficiency of incident photons by â¼20%. On the other hand, we develop a monolithic readout circuit of weak avalanche extraction to minimize the parasitic capacitance for the suppression of the afterpulsing effect. With 1.25 GHz sine wave gating and optimized gate amplitude and operation temperature, the SPD is characterized to reach a PDE of 60% with a dark count rate (DCR) of 340 kcps. For practical use, given 3 kcps DCR as a reference, the PDE reaches â¼40% PDE with an afterpulse probability of 5.5%, which can significantly improve the performance for the near-infrared SPD-based applications.
RESUMO
High-frequency gating InGaAs/InP single-photon detectors (SPDs) are widely used for applications requiring single-photon detection in the near-infrared region such as quantum key distribution. Reducing SPD size is highly desired for practical use, which is favorable to the implementation of further system integration. Here we present, to the best of our knowledge, the most compact high-frequency sine wave gating (SWG) InGaAs/InP SPD. We design and fabricate an InGaAs/InP single-photon avalanche diode (SPAD) with optimized semiconductor structure and then encapsulate the SPAD chip and a mini-thermoelectric cooler inside a butterfly package with a size of 12.5 mm × 22 mm × 10 mm. Moreover, we implement a monolithic readout circuit for the SWG SPD in order to replace the quenching electronics that is previously designed with board-level integration. Finally, the components of SPAD, the monolithic readout circuit, and the affiliated circuits are integrated into a single module with a size of 13 cm × 8 cm × 4 cm. Compared with the 1.25 GHz SWG InGaAs/InP SPD module (25 cm × 10 cm × 33 cm) designed in 2012, the volume of our miniaturized SPD is reduced by 95%. After the characterization, the SPD exhibits excellent performance with a photon detection efficiency of 30%, a dark count rate of 2.0 kcps, and an afterpulse probability of 8.8% under the conditions of 1.25 GHz gating rate, 100 ns hold-off time, and 243 K. Also, we perform the stability test over one week, and the results show the high reliability of the miniaturized SPD module.