Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Imaging ; 22(1): 123, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810273

RESUMO

OBJECTIVES: Accurate contouring of the clinical target volume (CTV) is a key element of radiotherapy in cervical cancer. We validated a novel deep learning (DL)-based auto-segmentation algorithm for CTVs in cervical cancer called the three-channel adaptive auto-segmentation network (TCAS). METHODS: A total of 107 cases were collected and contoured by senior radiation oncologists (ROs). Each case consisted of the following: (1) contrast-enhanced CT scan for positioning, (2) the related CTV, (3) multiple plain CT scans during treatment and (4) the related CTV. After registration between (1) and (3) for the same patient, the aligned image and CTV were generated. Method 1 is rigid registration, method 2 is deformable registration, and the aligned CTV is seen as the result. Method 3 is rigid registration and TCAS, method 4 is deformable registration and TCAS, and the result is generated by a DL-based method. RESULTS: From the 107 cases, 15 pairs were selected as the test set. The dice similarity coefficient (DSC) of method 1 was 0.8155 ± 0.0368; the DSC of method 2 was 0.8277 ± 0.0315; the DSCs of method 3 and 4 were 0.8914 ± 0.0294 and 0.8921 ± 0.0231, respectively. The mean surface distance and Hausdorff distance of methods 3 and 4 were markedly better than those of method 1 and 2. CONCLUSIONS: The TCAS achieved comparable accuracy to the manual delineation performed by senior ROs and was significantly better than direct registration.


Assuntos
Aprendizado Profundo , Neoplasias do Colo do Útero , Algoritmos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Espécies Reativas de Oxigênio , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia
2.
J Appl Clin Med Phys ; 23(2): e13470, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807501

RESUMO

OBJECTIVES: Because radiotherapy is indispensible for treating cervical cancer, it is critical to accurately and efficiently delineate the radiation targets. We evaluated a deep learning (DL)-based auto-segmentation algorithm for automatic contouring of clinical target volumes (CTVs) in cervical cancers. METHODS: Computed tomography (CT) datasets from 535 cervical cancers treated with definitive or postoperative radiotherapy were collected. A DL tool based on VB-Net was developed to delineate CTVs of the pelvic lymph drainage area (dCTV1) and parametrial area (dCTV2) in the definitive radiotherapy group. The training/validation/test number is 157/20/23. CTV of the pelvic lymph drainage area (pCTV1) was delineated in the postoperative radiotherapy group. The training/validation/test number is 272/30/33. Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) were used to evaluate the contouring accuracy. Contouring times were recorded for efficiency comparison. RESULTS: The mean DSC, MSD, and HD values for our DL-based tool were 0.88/1.32 mm/21.60 mm for dCTV1, 0.70/2.42 mm/22.44 mm for dCTV2, and 0.86/1.15 mm/20.78 mm for pCTV1. Only minor modifications were needed for 63.5% of auto-segmentations to meet the clinical requirements. The contouring accuracy of the DL-based tool was comparable to that of senior radiation oncologists and was superior to that of junior/intermediate radiation oncologists. Additionally, DL assistance improved the performance of junior radiation oncologists for dCTV2 and pCTV1 contouring (mean DSC increases: 0.20 for dCTV2, 0.03 for pCTV1; mean contouring time decrease: 9.8 min for dCTV2, 28.9 min for pCTV1). CONCLUSIONS: DL-based auto-segmentation improves CTV contouring accuracy, reduces contouring time, and improves clinical efficiency for treating cervical cancer.


Assuntos
Aprendizado Profundo , Neoplasias do Colo do Útero , Algoritmos , Feminino , Humanos , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa