Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 2): 128762, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101657

RESUMO

Nanofibrous scaffolds mimicking important features of the native extracellular matrix (ECM) provide a promising strategy for tissue regeneration. However, 3D scaffolds mimicking natural protein nanofibers and bioactive glycosaminoglycans remain poorly developed. In this study, a biomimetic nanofibrous scaffold composed of natural silk protein nanofibers and glycosaminoglycan hyaluronic acid (HA) was developed. HA functionalization significantly improved the hydrophilicity and bioactivity of silk nanofibers (SNFs). SNFs can be assembled into nanofibrous aerogel scaffolds with low density and desirable shapes on a large scale. More importantly, with the assistance of HA, the silk nanofibrous aerogel scaffolds with ultra-high porosity, natural bioactivity, and structural stability in aqueous environment can be fabricated. In the protease/hyaluronidase solution, the SNF scaffolds with 10.0 % HA can maintain their monolithic shape for >3 weeks. The silk nanofibrous scaffolds not only imitate the composition of ECM but also mimic the hierarchical structure of ECM, providing a favorable microenvironment for cell adhesion and proliferation. These results indicate that this structurally and functionally biomimetic system is a promising tissue engineering scaffold.


Assuntos
Nanofibras , Seda , Seda/química , Ácido Hialurônico/química , Engenharia Tecidual/métodos , Biomimética , Alicerces Teciduais/química , Nanofibras/química , Glicosaminoglicanos
2.
Curr Res Food Sci ; 8: 100670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261894

RESUMO

The effects of co-fermentation of yeast and Lactiplantibacillus plantarum 104 on buckwheat starch physical properties were investigated by various analytical techniques. To investigate the regulations of starch modification during fermentation and to provide a foundation for improving the performance of modified properties of buckwheat starch food. The pasting properties were decreased by co-fermentation also resulted in a reduction in the relative crystallinity. Scanning electron microscopy (SEM) demonstrated that more holes and a relatively rough granule surface were seen in the co-fermentation group. Fourier transform-infrared spectroscopy (FT-IR) results suggested that co-fermentation fermentation decreased the degree of short-range order (DO) and degree of t1he double helix (DD). The results demonstrated that co-fermentation altered these properties more rapidly than spontaneous fermentation. In conclusion, Lactiplantibacillus plantarum 104 could be used for buckwheat fermentation to improve food quality.

3.
Int J Biol Macromol ; 272(Pt 1): 132805, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825261

RESUMO

The composites composed of hyaluronic acid (HA) and silk fibroin (SF) exhibit great potential in diverse biomedical applications. However, the utilization of commercial crosslinkers such as 1,4-butanediol diglycidyl ether (BDDE) for crosslinking HA typically necessitates harsh conditions involving strong alkaline, which greatly limits its potential applications. In this study, a mild modified approach was developed to fabricate HA/SF blend sponges crosslinked by BDDE without alkaline conditions. The blend solutions were cryo-concentrated to induce crosslinking reactions. The mechanism of freezing crosslinking was elucidated by investigating the effects of ice crystal growth and HA molecular weight on the degree of crosslinking. The results revealed that HA achieved efficient crosslinking when its molecular weight exceeds 1000 kDa and freezing temperatures ranged from -40 °C to -20 °C. After introducing SF, multiple crosslinks were formed between SF and HA chains, producing water-stable porous sponges. The SEM results demonstrated that the introduction of SF effectively enhanced the interconnectivity between macropores through creating subordinate holes onto the pores wall. Raising the SF content significantly enhanced compression strength, resistance to enzymatic degradation and cell viability of blend sponges. This study provides a novel strategy for designing bioactive HA/SF blend sponges as substitutes for tissue repair and wound dressing.


Assuntos
Reagentes de Ligações Cruzadas , Fibroínas , Ácido Hialurônico , Fibroínas/química , Ácido Hialurônico/química , Animais , Reagentes de Ligações Cruzadas/química , Porosidade , Materiais Biocompatíveis/química , Camundongos , Peso Molecular , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa