Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Photosynth Res ; 160(2-3): 125-142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687462

RESUMO

We present here the research contributions of Jan Amesz (1934-2001) on deciphering the details of the early physico-chemical steps in oxygenic photosynthesis in plants, algae and cyanobacteria, as well as in anoxygenic photosynthesis in purple, green, and heliobacteria. His research included light absorption and the mechanism of excitation energy transfer, primary photochemistry, and electron transfer steps until the reduction of pyridine nucleotides. Among his many discoveries, we emphasize his 1961 proof, with L. N. M. Duysens, of the "series scheme" of oxygenic photosynthesis, through antagonistic effects of Light I and II on the redox state of cytochrome f. Further, we highlight the following research on oxygenic photosynthesis: the experimental direct proof that plastoquinone and plastocyanin function at their respective places in the Z-scheme. In addition, Amesz's major contributions were in unraveling the mechanism of excitation energy transfer and electron transport steps in anoxygenic photosynthetic bacteria (purple, green and heliobacteria). Before we present his research, focusing on his key discoveries, we provide a glimpse of his personal life. We end this Tribute with reminiscences from three of his former doctoral students (Sigi Neerken; Hjalmar Pernentier, and Frank Kleinherenbrink) and from several scientists (Suleyman Allakhverdiev; Robert Blankenship; Richard Cogdell) including two of the authors (G. Garab and A. Stirbet) of this Tribute.


Assuntos
Fotossíntese , História do Século XX , História do Século XXI , Oxigênio/metabolismo , Biofísica/história , Transporte de Elétrons
2.
Photosynth Res ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662326

RESUMO

It has been thoroughly documented, by using 31P-NMR spectroscopy, that plant thylakoid membranes (TMs), in addition to the bilayer (or lamellar, L) phase, contain at least two isotropic (I) lipid phases and an inverted hexagonal (HII) phase. However, our knowledge concerning the structural and functional roles of the non-bilayer phases is still rudimentary. The objective of the present study is to elucidate the origin of I phases which have been hypothesized to arise, in part, from the fusion of TMs (Garab et al. 2022 Progr Lipid Res 101,163). We take advantage of the selectivity of wheat germ lipase (WGL) in eliminating the I phases of TMs (Dlouhý et al. 2022 Cells 11: 2681), and the tendency of the so-called BBY particles, stacked photosystem II (PSII) enriched membrane pairs of 300-500 nm in diameter, to form large laterally fused sheets (Dunahay et al. 1984 BBA 764: 179). Our 31P-NMR spectroscopy data show that BBY membranes contain L and I phases. Similar to TMs, WGL selectively eliminated the I phases, which at the same time exerted no effect on the molecular organization and functional activity of PSII membranes. As revealed by sucrose-density centrifugation, magnetic linear dichroism spectroscopy and scanning electron microscopy, WGL disassembled the large laterally fused sheets. These data provide direct experimental evidence on the involvement of I phase(s) in the fusion of stacked PSII membrane pairs, and strongly suggest the role of non-bilayer lipids in the self-assembly of the TM system.

3.
Plant Cell ; 33(4): 1286-1302, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793891

RESUMO

Photosystem II (PSII) uses solar energy to oxidize water and delivers electrons for life on Earth. The photochemical reaction center of PSII is known to possess two stationary states. In the open state (PSIIO), the absorption of a single photon triggers electron-transfer steps, which convert PSII into the charge-separated closed state (PSIIC). Here, by using steady-state and time-resolved spectroscopic techniques on Spinacia oleracea and Thermosynechococcus vulcanus preparations, we show that additional illumination gradually transforms PSIIC into a light-adapted charge-separated state (PSIIL). The PSIIC-to-PSIIL transition, observed at all temperatures between 80 and 308 K, is responsible for a large part of the variable chlorophyll-a fluorescence (Fv) and is associated with subtle, dark-reversible reorganizations in the core complexes, protein conformational changes at noncryogenic temperatures, and marked variations in the rates of photochemical and photophysical reactions. The build-up of PSIIL requires a series of light-induced events generating rapidly recombining primary radical pairs, spaced by sufficient waiting times between these events-pointing to the roles of local electric-field transients and dielectric relaxation processes. We show that the maximum fluorescence level, Fm, is associated with PSIIL rather than with PSIIC, and thus the Fv/Fm parameter cannot be equated with the quantum efficiency of PSII photochemistry. Our findings resolve the controversies and explain the peculiar features of chlorophyll-a fluorescence kinetics, a tool to monitor the functional activity and the structural-functional plasticity of PSII in different wild-types and mutant organisms and under stress conditions.


Assuntos
Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/química , Clorofila/análogos & derivados , Clorofila/química , Diurona/farmacologia , Fluorescência , Luz , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Conformação Proteica , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Thermosynechococcus/química
4.
Photosynth Res ; 157(1): 43-51, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36847891

RESUMO

On behalf of the entire photosynthesis community, it is an honor, for us, to write about two very eminent scientists who were recently recognised with a Lifetime Achievement Award from the International Society of Photosynthesis Research (ISPR) on August 5, 2022; this prestigious Award was given during the closing ceremony of the 18th International Congress on Photosynthesis Research in Dunedin, New Zealand. The awardees were: Professor Eva-Mari Aro (Finland) and Professor Emeritus Govindjee Govindjee (USA). One of the authors, Anjana Jajoo, is especially delighted to be a part of this tribute to professors Aro and Govindjee as she was lucky enough to have worked with both of them.


Assuntos
Distinções e Prêmios , Fotossíntese , Logro
5.
J Exp Bot ; 74(18): 5458-5471, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37410874

RESUMO

Photosystem II (PSII) uses solar energy to oxidize water and delivers electrons to fix CO2. Although the structure at atomic resolution and the basic photophysical and photochemical functions of PSII are well understood, many important questions remain. The activity of PSII in vitro and in vivo is routinely monitored by recording the induction kinetics of chlorophyll a fluorescence (ChlF). According to the 'mainstream' model, the rise from the minimum level (Fo) to the maximum (Fm) of ChlF of dark-adapted PSII reflects the closure of all functionally active reaction centers, and the Fv/Fm ratio is equated with the maximum photochemical quantum yield of PSII (where Fv=Fm-Fo). However, this model has never been free of controversies. Recent experimental data from a number of studies have confirmed that the first single-turnover saturating flash (STSF), which generates the closed state (PSIIC), produces F1

6.
Physiol Plant ; 175(6): e14100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148250

RESUMO

High soil salinity is a global problem in agriculture that directly affects seed germination and the development of the seedlings sown deep in the soil. To study how salinity affected plastid ultrastructure, leaf segments of 11-day-old light- and dark-grown (etiolated) wheat (Triticum aestivum L. cv. Mv Béres) seedlings were floated on Hoagland solution, 600 mM KCl:NaCl (1:1) salt or isosmotic polyethylene glycol solution for 4 h in the dark. Light-grown seedlings were also treated in the light. The same treatments were also performed on etio-chloroplasts of etiolated seedlings greened for different time periods. Salt stress induced slight to strong changes in the relative chlorophyll content, photosynthetic activity, and organization of thylakoid complexes. Measurements of malondialdehyde contents and high-temperature thermoluminescence indicated significantly increased oxidative stress and lipid peroxidation under salt treatment, except for light-grown leaves treated in the dark. In chloroplasts of leaf segments treated in the light, slight shrinkage of grana (determined by transmission electron microscopy and small-angle neutron scattering) was observed, while a swelling of the (pro)thylakoid lumen was observed in etioplasts. Salt-induced swelling disappeared after the onset of photosynthesis after 4 h of greening. Osmotic stress caused no significant alterations in plastid structure and only mild changes in their activities, indicating that the swelling of the (pro)thylakoid lumen and the physiological effects of salinity are rather associated with the ionic component of salt stress. Our data indicate that etioplasts of dark-germinated wheat seedlings are the most sensitive to salt stress, especially at the early stages of their greening.


Assuntos
Cloroplastos , Triticum , Clorofila , Plântula , Estresse Salino , Solo , Salinidade
7.
J Chem Phys ; 156(14): 145101, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428385

RESUMO

Photosystem II (PSII) is the pigment-protein complex driving the photoinduced oxidation of water and reduction of plastoquinone in all oxygenic photosynthetic organisms. Excitations in the antenna chlorophylls are photochemically trapped in the reaction center (RC) producing the chlorophyll-pheophytin radical ion pair P+ Pheo-. When electron donation from water is inhibited, the oxidized RC chlorophyll P+ acts as an excitation quencher, but knowledge on the kinetics of quenching is limited. Here, we used femtosecond transient absorption spectroscopy to compare the excitation dynamics of PSII with neutral and oxidized RC (P+). We find that equilibration in the core antenna has a major lifetime of about 300 fs, irrespective of the RC redox state. Two-dimensional electronic spectroscopy revealed additional slower energy equilibration occurring on timescales of 3-5 ps, concurrent with excitation trapping. The kinetics of PSII with open RC can be described well with previously proposed models according to which the radical pair P+ Pheo- is populated with a main lifetime of about 40 ps, which is primarily determined by energy transfer between the core antenna and the RC chlorophylls. Yet, in PSII with oxidized RC (P+), fast excitation quenching was observed with decay lifetimes as short as 3 ps and an average decay lifetime of about 90 ps, which is shorter than the excited-state lifetime of PSII with open RC. The underlying mechanism of this extremely fast quenching prompts further investigation.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema II , Clorofila/química , Transferência de Energia , Cinética , Complexos de Proteínas Captadores de Luz , Feofitinas , Complexo de Proteína do Fotossistema II/química , Água
8.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613535

RESUMO

Rate-limiting steps in the dark-to-light transition of Photosystem II (PSII) were discovered by measuring the variable chlorophyll-a fluorescence transients elicited by single-turnover saturating flashes (STSFs). It was shown that in diuron-treated samples: (i) the first STSF, despite fully reducing the QA quinone acceptor molecule, generated only an F1(

Assuntos
Diurona , Complexo de Proteína do Fotossistema II , Temperatura , Diurona/farmacologia , Listas de Espera , Clorofila , Clorofila A , Luz
9.
Photosynth Res ; 150(1-3): 41-49, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32488447

RESUMO

The photosynthetic performance of crop plants under a variety of environmental factors and stress conditions, at the fundamental level, depends largely on the organization and structural flexibility of thylakoid membranes. These highly organized membranes accommodate virtually all protein complexes and additional compounds carrying out the light reactions of photosynthesis. Most regulatory mechanisms fine-tuning the photosynthetic functions affect the organization of thylakoid membranes at different levels of the structural complexity. In order to monitor these reorganizations, non-invasive techniques are of special value. On the mesoscopic scale, small-angle neutron scattering (SANS) has been shown to deliver statistically and spatially averaged information on the periodic organization of the thylakoid membranes in vivo and/or, in isolated thylakoids, under physiologically relevant conditions, without fixation or staining. More importantly, SANS investigations have revealed rapid reversible reorganizations on the timescale of several seconds and minutes. In this paper, we give a short introduction into the basics of SANS technique, advantages and limitations, and briefly overview recent advances and potential applications of this technique in the physiology and biotechnology of crop plants. We also discuss future perspectives of neutron crystallography and different neutron scattering techniques, which are anticipated to become more accessible and of more use in photosynthesis research at new facilities with higher fluxes and innovative instrumentation.


Assuntos
Fotossíntese , Tilacoides , Nêutrons , Espalhamento a Baixo Ângulo , Tilacoides/metabolismo
10.
Photosynth Res ; 149(1-2): 233-252, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33948813

RESUMO

Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.


Assuntos
Adaptação Ocular/fisiologia , Arabidopsis/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prenilação
11.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681781

RESUMO

In this paper, we examined the effects of melittin, a bee venom membrane-active peptide, on mitochondrial respiration and cell viability of healthy human lymphocytes (HHL) and Jurkat cells, as well as on lymphoblasts from acute human T cell leukemia. The viability of melittin-treated cells was related to changes in O2 consumption and in the respiratory control index (RCI) of mitochondria isolated from melittin-pretreated cells as well as of mitochondria first isolated from cells and then directly treated with melittin. It was shown that melittin is three times more cytotoxic to Jurkat cells than to HHL, but O2 consumption and RCI values of mitochondria from both cell types were equally affected by melittin when melittin was directly added to mitochondria. To elucidate the molecular mechanism of melittin's cytotoxicity to healthy and cancer cells, the effects of melittin on lipid-packing and on the dynamics in model plasma membranes of healthy and cancer cells, as well as of the inner mitochondrial membrane, were studied by EPR spin probes. The affinity of melittin binding to phosphatidylcholine, phosphatidylserine, phosphatidic acid and cardiolipin, and binding sites of phospholipids on the surface of melittin were studied by 31P-NMR, native PAGE and AutoDock modeling. It is suggested that the melittin-induced decline of mitochondrial bioenergetics contributes primarily to cell death; the higher cytotoxicity of melittin to cancer cells is attributed to its increased permeability through the plasma membrane.


Assuntos
Linfócitos/efeitos dos fármacos , Meliteno/farmacologia , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Venenos de Abelha/química , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células Jurkat , Bicamadas Lipídicas/química , Linfócitos/metabolismo , Meliteno/isolamento & purificação , Mitocôndrias/fisiologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Modelos Biológicos , Permeabilidade/efeitos dos fármacos
12.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299279

RESUMO

Modern light microscopy imaging techniques have substantially advanced our knowledge about the ultrastructure of plant cells and their organelles. Laser-scanning microscopy and digital light microscopy imaging techniques, in general-in addition to their high sensitivity, fast data acquisition, and great versatility of 2D-4D image analyses-also opened the technical possibilities to combine microscopy imaging with spectroscopic measurements. In this review, we focus our attention on differential polarization (DP) imaging techniques and on their applications on plant cell walls and chloroplasts, and show how these techniques provided unique and quantitative information on the anisotropic molecular organization of plant cell constituents: (i) We briefly describe how laser-scanning microscopes (LSMs) and the enhanced-resolution Re-scan Confocal Microscope (RCM of Confocal.nl Ltd. Amsterdam, Netherlands) can be equipped with DP attachments-making them capable of measuring different polarization spectroscopy parameters, parallel with the 'conventional' intensity imaging. (ii) We show examples of different faces of the strong anisotropic molecular organization of chloroplast thylakoid membranes. (iii) We illustrate the use of DP imaging of cell walls from a variety of wood samples and demonstrate the use of quantitative analysis. (iv) Finally, we outline the perspectives of further technical developments of micro-spectropolarimetry imaging and its use in plant cell studies.


Assuntos
Células Vegetais/ultraestrutura , Anisotropia , Parede Celular/ultraestrutura , Cloroplastos/ultraestrutura , Microscopia Confocal/métodos , Microscopia de Polarização/métodos , Tilacoides/ultraestrutura
13.
Proc Natl Acad Sci U S A ; 114(35): 9481-9486, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808031

RESUMO

In this paper we propose an energy dissipation mechanism that is completely reliant on changes in the aggregation state of the phycobilisome light-harvesting antenna components. All photosynthetic organisms regulate the efficiency of excitation energy transfer (EET) to fit light energy supply to biochemical demands. Not many do this to the extent required of desert crust cyanobacteria. Following predawn dew deposition, they harvest light energy with maximum efficiency until desiccating in the early morning hours. In the desiccated state, absorbed energy is completely quenched. Time and spectrally resolved fluorescence emission measurements of the desiccated desert crust Leptolyngbya ohadii strain identified (i) reduced EET between phycobilisome components, (ii) shorter fluorescence lifetimes, and (iii) red shift in the emission spectra, compared with the hydrated state. These changes coincide with a loss of the ordered phycobilisome structure, evident from small-angle neutron and X-ray scattering and cryo-transmission electron microscopy data. Based on these observations we propose a model where in the hydrated state the organized rod structure of the phycobilisome supports directional EET to reaction centers with minimal losses due to thermal dissipation. In the desiccated state this structure is lost, giving way to more random aggregates. The resulting EET path will exhibit increased coupling to the environment and enhanced quenching.


Assuntos
Cianobactérias/fisiologia , Clima Desértico , Microbiologia do Solo , Complexos de Proteínas Captadores de Luz , Fotossíntese/fisiologia , Ficobilissomas/fisiologia
14.
Photosynth Res ; 139(1-3): 449-460, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30374728

RESUMO

Selenium (Se) is a natural trace element, which shifts its action in a relatively narrow concentration range from nutritional role to toxicity. Although it has been well established that in plants chloroplasts are among the primary targets, the mechanism of toxicity on photosynthesis is not well understood. Here, we compared selenate and red-allotrope elemental selenium nanoparticles (red nanoSe) in in vitro tobacco cultures to investigate their effects on the structure and functions of the photosynthetic machinery. Selenate at 10 mg/L concentration retarded plant growth; it also led to a decreased chlorophyll content, accompanied with an increase in the carotenoid-to-chlorophyll ratio. Structural examinations of the photosynthetic machinery, using electron microscopy, small-angle neutron scattering and circular dichroism spectroscopy, revealed significant perturbation in the macro-organization of the pigment-protein complexes and sizeable shrinkage in the repeat distance of granum thylakoid membranes. As shown by chlorophyll a fluorescence transient measurements, these changes in the ultrastructure were associated with a significantly diminished photosystem II activity and a reduced performance of the photosynthetic electron transport, and an enhanced capability of non-photochemical quenching. These changes in the structure and function of the photosynthetic apparatus explain, at least in part, the retarded growth of plantlets in the presence of 10 mg/L selenate. In contrast, red nanoSe, even at 100 mg/L and selenate at 1 mg/L, exerted no negative effect on the growth of plantlets and affected only marginally the thylakoid membrane ultrastructure and the photosynthetic functions.


Assuntos
Nanopartículas/química , Nicotiana/metabolismo , Fotossíntese/fisiologia , Ácido Selênico/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Dicroísmo Circular , Tilacoides/metabolismo
15.
Eur Biophys J ; 48(5): 457-463, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30982120

RESUMO

Confocal laser scanning microscopy is probably the most widely used and one of the most powerful techniques in basic biology, medicine and material sciences that is employed to elucidate the architecture of complex cellular structures and molecular macro-assemblies. It has recently been shown that the information content, signal-to-noise ratio and resolution of such microscopes (LSMs) can be improved significantly by adding different attachments or modifying their design, while retaining their user-friendly features and relatively moderate costs. Differential polarization (DP) attachments, using high-frequency modulation/demodulation circuits, have made LSMs capable of high-precision 2D and 3D mapping of the anisotropy of microscopic samples-without interfering with their 'conventional' fluorescence or transmission imaging (Steinbach et al. in Methods Appl Fluoresc 2:015005, 2014). The resolution and the quality of fluorescence imaging have been enhanced in the recently constructed Re-scan confocal microscopy (RCM) (De Luca et al. in Biomed Opt Express 4:2644-2656, 2013). In this work, we developed the RCM technique further, by adding a DP-attachment modulating the exciting laser beam via a liquid crystal (LC) retarder synchronized with the data acquisition system; by this means, and with the aid of a software, fluorescence-detected linear dichroism (FDLD), characteristic of the anisotropic molecular organization of the sample, could be recorded in parallel with the confocal fluorescence imaging. For demonstration, we show FDLD images of a plant cell wall (Ginkgo biloba) stained with Etzold's staining solution.


Assuntos
Fluorescência , Microscopia Confocal , Anisotropia , Ginkgo biloba/citologia , Razão Sinal-Ruído
16.
Physiol Plant ; 166(1): 278-287, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30666653

RESUMO

Earlier experiments, using 31 P-NMR and time-resolved merocyanine fluorescence spectroscopy, have shown that isolated intact, fully functional plant thylakoid membranes, in addition to the bilayer phase, contain three non-bilayer (or non-lamellar) lipid phases. It has also been shown that the lipid polymorphism of thylakoid membranes can be characterized by remarkable plasticity, i.e. by significant variations in 31 P-NMR signatures. However, changes in the lipid-phase behaviour of thylakoids could not be assigned to changes in the overall membrane organization and the photosynthetic activity, as tested by circular dichroism and 77 K fluorescence emission spectroscopy and the magnitude of the variable fluorescence of photosystem II, which all showed only marginal variations. In this work, we investigated in more detail the temporal stability of the different lipid phases by recording 31 P-NMR spectra on isolated thylakoid membranes that were suspended in sorbitol- or NaCl-based media. We observed, at 5°C during 8 h in the dark, substantial gradual enhancement of the isotropic lipid phases and diminishment of the bilayer phase in the sorbitol-based medium. These changes compared well with the gradually increasing membrane permeability, as testified by the gradual acceleration of the decay of flash-induced electrochromic absorption changes and characteristic changes in the kinetics of fast chlorophyll a-fluorescence transients; all variations were much less pronounced in the NaCl-based medium. These observations suggest that non-bilayer lipids and non-lamellar lipid phases play significant roles in the structural dynamics and functional plasticity of thylakoid membranes.


Assuntos
Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/metabolismo , Tilacoides/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Complexo de Proteína do Fotossistema II/metabolismo
17.
Physiol Plant ; 166(1): 22-32, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30790299

RESUMO

Recent chlorophyll-a fluorescence yield measurements, using single-turnover saturating flashes (STSFs), have revealed the involvement of a rate-limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron-inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819 nm, reflecting the photooxidation and re-reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark-adapted sample, the decay kinetics could be described with lifetimes of 17 ns (∼50%) and 167 ns (∼30%), and a longer-lived component (∼20%). This kinetics are attributed to re-reduction of P680•+ by the donor side of PSII. In contrast, upon second-flash (with Δt between 5 µs and 100 ms) or repetitive excitation, the 819 nm absorption changes decayed with lifetimes of about 2 ns (∼60%) and 10 ns (∼30%), attributed to recombination of the primary radical pair P680•+ Pheo•- , and a small longer-lived component (∼10%). These data confirm that only the first STSF is capable of generating stable charge separation - leading to the reduction of QA ; and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double-flash experiments indicate that the rate-limiting steps, detected by chlorophyll-a fluorescence, are not correlated with the turnover of P680.


Assuntos
Clorofila A/metabolismo , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Oxirredução
18.
Biochim Biophys Acta Gen Subj ; 1862(6): 1350-1363, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29526506

RESUMO

Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Polarização/métodos , Fotossíntese , Folhas de Planta/metabolismo , Refratometria/métodos , Zea mays/metabolismo , Luz , Folhas de Planta/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
19.
Biochim Biophys Acta Bioenerg ; 1858(5): 360-365, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28237493

RESUMO

Energization of thylakoid membranes brings about the acidification of the lumenal aqueous phase, which activates important regulatory mechanisms. Earlier Jajoo and coworkers (2014 FEBS Lett. 588:970) have shown that low pH in isolated plant thylakoid membranes induces changes in the excitation energy distribution between the two photosystems. In order to elucidate the structural background of these changes, we used small-angle neutron scattering on thylakoid membranes exposed to low p2H (pD) and show that gradually lowering the p2H from 8.0 to 5.0 causes small but well discernible reversible diminishment of the periodic order and the lamellar repeat distance and an increased mosaicity - similar to the effects elicited by light-induced acidification of the lumen. Our data strongly suggest that thylakoids dynamically respond to the membrane energization and actively participate in different regulatory mechanisms.


Assuntos
Difração de Nêutrons , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/metabolismo , Espalhamento a Baixo Ângulo , Tilacoides/metabolismo , Transferência de Energia , Concentração de Íons de Hidrogênio , Fluidez de Membrana , Pisum sativum/ultraestrutura , Complexo de Proteína do Fotossistema I/ultraestrutura , Complexo de Proteína do Fotossistema II/ultraestrutura , Folhas de Planta/metabolismo , Tilacoides/ultraestrutura
20.
Biochim Biophys Acta ; 1857(9): 1373-1379, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27155390

RESUMO

Diatoms possess special light-harvesting proteins involved in the photoprotection mechanism called non-photochemical quenching (NPQ). These Lhcx proteins were shown to be subunits of trimeric fucoxanthin-chlorophyll complexes (FCPa) in centric diatoms, but their mode of action is still unclear. Here we investigated the influence of Fcp6, an orthologue to Lhcx1 of Thalassiosira pseudonana in the diatom Cyclotella meneghiniana, by reducing its amount using an antisense approach. Whereas the pigment interactions inside FCPa were not influenced by the presence or absence of Fcp6, as demonstrated by unaltered spectra of circular dichroism, changes could be observed on the level of thylakoids and cells in the mutants compared to WT. This fits to recent models of NPQ in diatoms, where FCP aggregation or supramolecular reorganisation is thought to be a major feature. Thus, Fcp6 (Lhcx1) appears to alter pigment-pigment interactions inside the aggregates, but not inside (un-aggregated) FCPa itself.


Assuntos
Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/fisiologia , Tilacoides/química , Dicroísmo Circular , Complexos de Proteínas Captadores de Luz/química , Agregados Proteicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa