Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 10(9): 1118-28, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22984968

RESUMO

To study how the P19 suppressor of gene-silencing protein can be used effectively for the production of therapeutic glycoproteins, the following factors were examined: the genetic elements used for expressing recombinant proteins; the effect of different P19 concentrations; compatibility of P19 with various Nicotiana tabacum cultivars for transgenic expression; the glycan profile of a recombinant therapeutic glycoprotein co-expressed with P19 in an RNAi-based glycomodified Nicotiana benthamiana expression host. The coding sequences for the heavy and light chains of trastuzumab were cloned into five plant expression vectors (102-106) containing different 5' and 3' UTRs, designated as vector sets 102-106 mAb. The P19 protein of Tomato bushy stunt virus (TBSV) was also cloned into vector 103, which contained the Cauliflower mosaic virus (CaMV) 35S promoter and 5'UTR together with the terminator region of the nopaline synthase gene of Agrobacterium. Transient expression of the antibody vectors resulted in different levels of trastuzumab accumulation, the highest being 105 and 106 mAb at about 1% of TSP. P19 increased the concentration of trastuzumab approximately 15-fold (to about 2.3% of TSP) when co-expressed with 103 mAb but did not affect antibody levels with vectors 102 and 106 mAb. When 103 mAb was expressed together with P19 in different N. tabacum cultivars, all except Little Crittenden showed a marked discolouring of the infiltrated areas of the leaf and decreased antibody expression. Co-expression of P19 also abolished antibody accumulation in crosses between N. tabacum cv. I-64 and Little Crittenden, indicating a dominant mode of inheritance for the observed P19-induced responses.


Assuntos
Anticorpos Monoclonais Humanizados/biossíntese , Inativação Gênica , Nicotiana/metabolismo , Planticorpos/metabolismo , Proteínas Virais/metabolismo , Fucosiltransferases/metabolismo , Pentosiltransferases/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/biossíntese , Especificidade da Espécie , Nicotiana/genética , Trastuzumab , UDP Xilose-Proteína Xilosiltransferase
2.
Insect Biochem Mol Biol ; 38(7): 697-704, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18549955

RESUMO

A new 'variant' behavior in western corn rootworm (WCR) has resulted in egg-laying into non-cornfields, compared to 'normal' deposition of eggs in cornfields, allowing these insects to circumvent crop rotation. No morphological or genetic characteristics have been defined to differentiate between the normal and variant biotypes. Cyclic GMP-dependent protein kinases (PKG) have been implicated in the regulation of behaviors in vertebrates, insects, and nematodes, including foraging behavior in Drosophila. A cDNA with homology to the Drosophila melanogaster foraging gene (called Dvfor1) was cloned from WCR. The deduced DvFOR1 protein is approximately 70% similar to FOR proteins in Drosophila, silkworm (Bombyx mori) and honeybee (Apis mellifera). It contains a coiled-coil region, two tandem cyclic nucleotide-binding domains, a serine/threonine kinase catalytic domain, and a serine/threonine kinase catalytic domain extension, which are all characteristically found in PKG proteins. Real-time PCR assays of foraging transcript levels in heads of normal and rotation adapted females of WCR obtained from lab-reared insect colonies indicated that the variants had higher levels (25%) of PKG expression than normals. The magnitude of this increase is similar to that observed in Drosophila rover phenotypes compared to sitter phenotypes. However, Diabrotica contains at least two different foraging gene transcripts, which complicates establishing a direct link between the level of gene expression and insect behavior.


Assuntos
Besouros/enzimologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Expressão Gênica , Proteínas de Insetos/metabolismo , Zea mays/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Southern Blotting , Clonagem Molecular , Besouros/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/genética , Ecossistema , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/genética , Masculino , Dados de Sequência Molecular , Oviposição , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína
3.
Methods Mol Biol ; 907: 389-408, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22907365

RESUMO

Expression and purification of recombinant proteins produced in plants is emerging as an affordable alternative to using more costly mammalian bioreactors since plants are capable of producing mammalian proteins at high concentrations. There are two general methods of expressing foreign proteins in plants, namely, transient expression and stable transgenic expression. Both methods have advantages which serve different purposes. Nicotiana benthamiana is primarily used as plant host for transient expression of foreign proteins. This system is capable of producing high yields of antibody in a relatively short period of time (days); however, intensive upstream processing is required as each plant must be infected with Agrobacterium tumefaciens cells by vacuum infiltration. N. tabacum is often used for production of stable transgenic plants through a procedure that requires longer development time (months). Although antibody yields are smaller compared with the transient method, the advantage of using stable transgenic expression is that very little upstream process management is required once homozygous seed lines are developed. In this chapter, we describe the basic methodologies for expressing antibodies in plants using the transient and transgenic systems.


Assuntos
Clonagem Molecular/métodos , Expressão Gênica , Nicotiana/genética , Planticorpos/metabolismo , Agrobacterium/metabolismo , Anticorpos Monoclonais Humanizados/metabolismo , Sequência de Bases , Biomassa , Western Blotting , Biologia Computacional , DNA Bacteriano/genética , Plantas Geneticamente Modificadas , Nicotiana/microbiologia , Trastuzumab , Vácuo
4.
J Agric Food Chem ; 58(18): 10056-63, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20799692

RESUMO

To study the agricultural production of biosimilar antibodies, trastuzumab (Herceptin) was expressed in Nicotiana benthamiana using the magnICON viral-based transient expression system. Immunoblot analyses of crude plant extracts revealed that trastuzumab accumulates within plants mostly in the fully assembled tetrameric form. Purification of trastuzumab from N. benthamiana was achieved using a scheme that combined ammonium sulfate precipitation with affinity chromatography. Following purification, the specificity of the plant-produced trastuzumab for the HER2 receptor was compared with Herceptin and confirmed by western immunoblot. Functional assays revealed that plant-produced trastuzumab and Herceptin have similar in vitro antiproliferative effects on breast cancer cells that overexpress HER2. Results confirm that plants may be developed as an alternative to traditional antibody expression systems for the production of therapeutic mAbs.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Nicotiana/metabolismo , Receptor ErbB-2/metabolismo , Adenocarcinoma/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais Humanizados , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Reatores Biológicos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Planticorpos/química , Planticorpos/genética , Planticorpos/metabolismo , Planticorpos/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Trastuzumab
5.
Plant Mol Biol ; 58(2): 283-94, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16027979

RESUMO

Alcohol dehydrogenase (ADH) activity in plants is generally associated with glycolytic fermentation, which facilitates cell survival during episodes of low-oxygen stress in water-logged roots as well as chronically hypoxic regions surrounding the vascular core. Work with tobacco and potato has implicated ADH activity in additional metabolic roles, including aerobic fermentation, acetaldehyde detoxification and carbon reutilization. Here a combination of approaches has been used to examine tissue-specific patterns of Adh gene expression in order to provide insight into the potential roles of alcohol dehydrogenases, using Petunia hybrida, a solanaceous species with well-characterized genetics. A reporter-gene study, relying on the promoters of Adh1 and Adh2 to drive expression of the gene for a green fluorescent protein derivative, mgfp5, revealed unexpectedly complex patterns of GFP fluorescence in floral tissues, particularly the stigma, style and nectary. Results of GC-MS analysis suggest the association of ADH with production of aromatic compounds in the nectary. Overall the results demonstrate selective recruitment of Adh gene family members in tissues and organs associated with diverse ADH functions.


Assuntos
Álcool Desidrogenase/metabolismo , Petunia/genética , Álcool Desidrogenase/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia de Fluorescência , Petunia/química , Petunia/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa