Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 538(7624): 222-225, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27602512

RESUMO

Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.

2.
Nature ; 467(7312): 190-3, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20720538

RESUMO

Isolated, atomically thin conducting membranes of graphite, called graphene, have recently been the subject of intense research with the hope that practical applications in fields ranging from electronics to energy science will emerge. The atomic thinness, stability and electrical sensitivity of graphene motivated us to investigate the potential use of graphene membranes and graphene nanopores to characterize single molecules of DNA in ionic solution. Here we show that when immersed in an ionic solution, a layer of graphene becomes a new electrochemical structure that we call a trans-electrode. The trans-electrode's unique properties are the consequence of the atomic-scale proximity of its two opposing liquid-solid interfaces together with graphene's well known in-plane conductivity. We show that several trans-electrode properties are revealed by ionic conductance measurements on a graphene membrane that separates two aqueous ionic solutions. Although our membranes are only one to two atomic layers thick, we find they are remarkable ionic insulators with a very small stable conductance that depends on the ion species in solution. Electrical measurements on graphene membranes in which a single nanopore has been drilled show that the membrane's effective insulating thickness is less than one nanometre. This small effective thickness makes graphene an ideal substrate for very high resolution, high throughput nanopore-based single-molecule detectors. The sensitivity of graphene's in-plane electronic conductivity to its immediate surface environment and trans-membrane solution potentials will offer new insights into atomic surface processes and sensor development opportunities.


Assuntos
Carbono/química , DNA/química , Eletrodos , Nanotecnologia/métodos , Análise de Sequência de DNA/métodos
3.
Science ; 358(6362): 511-513, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29074772

RESUMO

In the field of nanofluidics, it has been an ultimate but seemingly distant goal to controllably fabricate capillaries with dimensions approaching the size of small ions and water molecules. We report ion transport through ultimately narrow slits that are fabricated by effectively removing a single atomic plane from a bulk crystal. The atomically flat angstrom-scale slits exhibit little surface charge, allowing elucidation of the role of steric effects. We find that ions with hydrated diameters larger than the slit size can still permeate through, albeit with reduced mobility. The confinement also leads to a notable asymmetry between anions and cations of the same diameter. Our results provide a platform for studying the effects of angstrom-scale confinement, which is important for the development of nanofluidics, molecular separation, and other nanoscale technologies.

4.
Phys Rev Lett ; 101(17): 177003, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18999776

RESUMO

The temperature dependence of the electron-spin relaxation time in MgB2 is anomalous as it does not follow the resistivity above 150 K; it has a maximum around 400 K and decreases for higher temperatures. This violates the well established Elliot-Yafet theory of spin relaxation in metals. The anomaly occurs when the quasiparticle scattering rate (in energy units) is comparable to the energy difference between the conduction and a neighboring bands. The anomalous behavior is related to the unique band structure of MgB2 and the large electron-phonon coupling. The saturating spin relaxation is the spin transport analogue of the Ioffe-Regel criterion of electron transport.

5.
Nano Lett ; 5(7): 1267-71, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16178222

RESUMO

We report the realization of nanotube-based multiple quantum dots that are fully defined and controlled with electrostatic gates. Metallic top-gates are used to produce localized depletion regions in the underlying tubes; a pair of such depletion regions in a nanotube with ohmic contact electrodes defines the quantum dot. Top-gate voltages tune the transparencies of tunnel barriers as well as the electrostatic energies within single and multiple dots. This approach allows precise control over multiple devices on a single tube, and serves as a design paradigm for nanotube-based electronics and quantum systems.


Assuntos
Cristalização/métodos , Eletroquímica/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Pontos Quânticos , Semicondutores , Eletricidade Estática , Condutividade Elétrica , Eletroquímica/instrumentação , Nanotecnologia/instrumentação , Nanotubos de Carbono/análise
6.
Phys Rev Lett ; 94(6): 066603, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15783762

RESUMO

Electron spin resonance and ab initio electronic structure calculations show an intricate relation between molecular rotation and chemical bonding in the dilute solid solution. The unpaired electron of C59N is delocalized over several C60 molecules above 700 K, while at lower temperatures it remains localized within short range. The data suggest that below 350 K rigid C59N-C60 heterodimers are formed in thermodynamic equilibrium with dissociated rotating molecules. The structural fluctuations between heterodimers and dissociated molecules are accompanied by simultaneous electron spin transfer between C60 and C59N molecules. The calculation confirms that in the C59N-C60 heterodimer the spin density resides mostly on the C60 moiety, while it is almost entirely on C59N in the dissociated case.

7.
Phys Rev Lett ; 86(20): 4680-3, 2001 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-11384313

RESUMO

Through 13C NMR spin lattice relaxation ( T1) measurements in cubic Na2C60, we detect a gap in its electronic excitations, similar to that observed in tetragonal A4C60. This establishes that Jahn-Teller distortions (JTD) and strong electronic correlations must be considered to understand the behavior of even electron systems, regardless of the structure. Furthermore, in metallic Na2CsC60, a similar contribution to T1 is also detected for 13C and 133Cs NMR, implying the occurrence of excitations typical of JT distorted C( 2-)60 (or equivalently C( 4-)60). This supports the idea that dynamic JTD can induce attractive electronic interactions in odd electron systems.

8.
Phys Rev Lett ; 87(4): 047002, 2001 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-11461637

RESUMO

We observed the conduction electron spin resonance (CESR) in fine powders of MgB2 both in the superconducting and normal states. The Pauli susceptibility is chi(s) = 2.0 x 10(-5) emu/mole in the temperature range of 450 to 600 K. The spin relaxation rate has an anomalous temperature dependence. The CESR measured below T(c) at several frequencies suggests that MgB2 is a strongly anisotropic superconductor with the upper critical field, H(c2), ranging between 2 and 16 T. The high-field reversible magnetization data of a randomly oriented powder sample are well described assuming that MgB2 is an anisotropic superconductor with H(ab)(c2)/H(c)(c2) approximately 6-9.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa