Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(2): 023904, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512212

RESUMO

Using a passive, coherently driven nonlinear optical fiber ring resonator, we report the experimental realization of dissipative polarization domain walls. The domain walls arise through a symmetry breaking bifurcation and consist of temporally localized structures where the amplitudes of the two polarization modes of the resonator interchange, segregating domains of orthogonal polarization states. We show that dissipative polarization domain walls can persist in the resonator without changing shape. We also demonstrate on-demand excitation, as well as pinning of domain walls at specific positions for arbitrary long times. Our results could prove useful for the analog simulation of ubiquitous domain-wall related phenomena, and pave the way to an all-optical buffer adapted to the transmission of topological bits.

2.
Opt Lett ; 45(18): 5069-5072, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932455

RESUMO

We report on the experimental and numerical observation of polarization modulation instability (PMI) in a nonlinear fiber Kerr resonator. This phenomenon is phased-matched through the relative phase detuning between the intracavity fields associated with the two principal polarization modes of the cavity. Our experimental investigation is based on a 12 m long fiber ring resonator in which a polarization controller is inserted to finely control the level of intracavity birefringence. Depending on the amount of birefringence, the temporal patterns generated via PMI are found to be either stationary or to exhibit a period-doubled dynamics. The experimental results are in good agreement with numerical simulations based on an Ikeda map for the two orthogonally polarized modes. This Letter provides new insights into the control of modulation instability in multimode Kerr resonators.

3.
Chaos ; 30(8): 081101, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32872792

RESUMO

We use statistical tools to characterize the response of an excitable system to periodic perturbations. The system is an optically injected semiconductor laser under pulsed perturbations of the phase of the injected field. We characterize the laser response by counting the number of pulses emitted by the laser, within a time interval, ΔT, that starts when a perturbation is applied. The success rate, SR(ΔT), is then defined as the number of pulses emitted in the interval ΔT, relative to the number of perturbations. The analysis of the variation of SR with ΔT allows separating a constant lag of technical origin and a frequency-dependent lag of physical and dynamical origin. Once the lag is accounted for, the success rate clearly captures locked and unlocked regimes and the transitions between them. We anticipate that the success rate will be a practical tool for analyzing the output of periodically forced systems, particularly when very regular oscillations need to be generated via small periodic perturbations.

4.
Phys Rev Lett ; 123(1): 013902, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386416

RESUMO

We report on experimental observations of coexistence and interactions between nonlinear states with different polarizations in a passive Kerr resonator driven at a single carrier frequency. Using a fiber ring resonator with adjustable birefringence, we partially overlap nonlinear resonances of two orthogonal polarization modes, achieving coexistence between different nonlinear states by locking the driving laser frequency at various points within the overlap region. In particular, we observe coexistence between temporal cavity solitons and modulation instability patterns, as well as coexistence between two nonidentical cavity solitons with different polarizations. We also observe interactions between the distinctly polarized cavity solitons, as well as spontaneous excitation and annihilation of solitons by a near-orthogonally polarized unstable modulation instability pattern. By demonstrating that a single frequency driving field can support coexistence between differentially polarized solitons and complex modulation instability patterns, our work sheds light on the rich dissipative dynamics of multimode Kerr resonators. Our findings could also be of relevance to the generation of multiplexed microresonator frequency combs.

5.
Opt Lett ; 43(20): 4945-4948, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320790

RESUMO

We experimentally characterize the pulsing dynamics of a short all-fiber laser consisting of separate gain and absorber sections. Systematically varying the optical pump power for different lengths of the absorber section (ranging from 0.21 to 1.48 m) allows us to map out the qualitative behavior of the system. This identifies three main operational regions: nonlasing, stable Q-switching, and irregular pulsing. When interpreted in terms of the bifurcation structure of the Yamada model, the experimental results are in good qualitative agreement.

6.
Opt Lett ; 43(15): 3674-3677, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067652

RESUMO

It was recently predicted that, due to stimulated Raman scattering, temporal Kerr cavity solitons may exhibit oscillatory instabilities at large cavity detunings [Phys. Rev. Lett.120, 053902 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.053902]. Here, we report experimental observations of this behavior. To access the appropriate oscillatory regime, we construct a macroscopic fiber ring resonator with a high finesse of F≈240. By synchronously driving the resonator with flat-top nanosecond pulses, we can reach very large intracavity power levels, where Raman-induced soliton oscillations can be observed. We also surprisingly find that, in the limit of large cavity driving strengths, new soliton instability regimes that are not accounted for in the known bifurcation structure of driven Kerr resonators can emerge even in the absence of Raman effects. Our experimental results are in good agreement with numerical simulations.

7.
Opt Lett ; 43(13): 3192-3195, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957814

RESUMO

We experimentally and numerically study the use of intensity modulation for the controlled addressing of temporal Kerr cavity solitons (CSs). Using a coherently driven fiber ring resonator, we demonstrate that a single temporally broad intensity modulation pulse applied on the cavity driving field permits systematic and efficient writing and erasing of ultrashort cavity solitons. We use numerical simulations based on the mean-field Lugiato-Lefever model to investigate the addressing dynamics, and present a simple physical description of the underlying physics.

8.
Nat Commun ; 15(1): 1398, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360729

RESUMO

We investigate experimentally and theoretically a system ruled by an intricate interplay between topology, nonlinearity, and spontaneous symmetry breaking. The experiment is based on a two-mode coherently-driven optical resonator where photons interact through the Kerr nonlinearity. In presence of a phase defect, the modal structure acquires a synthetic Möbius topology enabling the realization of spontaneous symmetry breaking in inherently bias-free conditions without fine tuning of parameters. Rigorous statistical tests confirm the robustness of the underlying symmetry protection, which manifests itself by a periodic alternation of the modes reminiscent of period-doubling. This dynamic also confers long term stability to various localized structures including domain walls, solitons, and breathers. Our findings are supported by an effective Hamiltonian model and have relevance to other systems of interacting bosons and to the Floquet engineering of quantum matter. They could also be beneficial to the implementation of coherent Ising machines.

9.
Nat Commun ; 12(1): 4023, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188030

RESUMO

Dissipative solitons are self-localized structures that can persist indefinitely in open systems driven out of equilibrium. They play a key role in photonics, underpinning technologies from mode-locked lasers to microresonator optical frequency combs. Here we report on experimental observations of spontaneous symmetry breaking of dissipative optical solitons. Our experiments are performed in a nonlinear optical ring resonator, where dissipative solitons arise in the form of persisting pulses of light known as Kerr cavity solitons. We engineer symmetry between two orthogonal polarization modes of the resonator and show that the solitons of the system can spontaneously break this symmetry, giving rise to two distinct but co-existing vectorial solitons with mirror-like, asymmetric polarization states. We also show that judiciously applied perturbations allow for deterministic switching between the two symmetry-broken dissipative soliton states. Our work delivers fundamental insights at the intersection of multi-mode nonlinear optical resonators, dissipative structures, and spontaneous symmetry breaking, and expands upon our understanding of dissipative solitons in coherently driven Kerr resonators.

10.
Nat Commun ; 11(1): 311, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949155

RESUMO

Modelocked lasers constitute the fundamental source of optically-coherent ultrashort-pulsed radiation, with huge impact in science and technology. Their modeling largely rests on the master equation (ME) approach introduced in 1975 by Hermann A. Haus. However, that description fails when the medium dynamics is fast and, ultimately, when light-matter quantum coherence is relevant. Here we set a rigorous and general ME framework, the coherent ME (CME), that overcomes both limitations. The CME predicts strong deviations from Haus ME, which we substantiate through an amplitude-modulated semiconductor laser experiment. Accounting for coherent effects, like the Risken-Nummedal-Graham-Haken multimode instability, we envisage the usefulness of the CME for describing self-modelocking and spontaneous frequency comb formation in quantum-cascade and quantum-dot lasers. Furthermore, the CME paves the way for exploiting the rich phenomenology of coherent effects in laser design, which has been hampered so far by the lack of a coherent ME formalism.

11.
Nat Commun ; 6: 5915, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25557181

RESUMO

Optical localized states are usually defined as self-localized bistable packets of light, which exist as independently controllable optical intensity pulses either in the longitudinal or transverse dimension of nonlinear optical systems. Here we demonstrate experimentally and analytically the existence of longitudinal localized states that exist fundamentally in the phase of laser light. These robust and versatile phase bits can be individually nucleated and canceled in an injection-locked semiconductor laser operated in a neuron-like excitable regime and submitted to delayed feedback. The demonstration of their control opens the way to their use as phase information units in next-generation coherent communication systems. We analyse our observations in terms of a generic model, which confirms the topological nature of the phase bits and discloses their formal but profound analogy with Sine-Gordon solitons.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa