Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Pharmacol Res ; 202: 107104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364957

RESUMO

Here we present an account on the history of pharmacology in Spain. Pharmacology as an independent science in Europe began with the creation of university chairs. Of particular relevance was the appointment in 1872 of Osswald Shmiedeberg as chairman of an Institute of Pharmacology at the University of Strassbourg, Germany. Teófilo Hernando pioneered in Spain the new emerging pharmacology at the beginning of the XX Century. He made a posdoctoral stay in the laboratory of Schmiedeberg, working on digitalis. In 1912 he won the chair of "Materia Médica y Arte de Recetar" at "Universidad Central of Madrid" (today, "Universidad Complutense de Madrid", UCM). He soon decided to transform such subject to the emerging modern pharmacology, with the teaching of experimental pharmacology in the third course of medical studies and clinical therapeutics (today clinical pharmacology) in the sixth course. This was the status of pharmacology in 1920, supporting the view that Hernando was a pioneer of clinical pharmacology. However, the Spanish Civil War and the II Word War interropted this division of preclinical and clinical pharmacology; only in the 1980's was clinical pharmacolgy partially developed in Spain. From a scientific point of view, Hernando directly trained various young pharmacologists that extended the new science to various Spanish universities. Some of his direct disciples were Benigno Lorenzo Velázquez, Francisco García Valdecasas, Rafael Méndez, Tomás Alday, Gabriel Sánchez de la Cuesta, Dámaso Gutiérrez or Ramón P é rez-Cirera. One of the central research subject was the analysis of the effects of digitalis on the cat and frog heart. In the initiation of the 1970 s pharmacologists trained by those Hernando's students grew throughout various universities and the "Consejo Superior de Investigaciones Científicas" (CSIC). And hence, in 1972 the "Sociedad Española de Farmacología" (SEF) emerged. Later on, in the 1990's the "Sociedad Española de Farmacología Clínica (SEFC) also emerged. The relationship between the two societies is still weak. Out of the vast scope of the pharmacological sciences, Spanish pharmacologists have made relevant contributions in two areas namely, neuropsychopharmacology and cardiovacular pharmacology. Nonetheless, in other areas such as smooth muscle, gastroenterology, pharmacogenetics and hepatic toxicity, Spanish pharmacologists have also made relevant contributions. A succint description of such contributions is made. Finally, some hints on perspectives for the further development of preclinical and clinical pharmacology in Spain, are offered.


Assuntos
Farmacologia Clínica , Farmacologia , Humanos , Espanha , Europa (Continente) , Farmacogenética
2.
Pflugers Arch ; 475(6): 667-690, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36884064

RESUMO

This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.


Assuntos
Medula Suprarrenal , Células Cromafins , Animais , Cálcio/metabolismo , Células Cromafins/metabolismo , Medula Suprarrenal/metabolismo , Catecolaminas/metabolismo , Epinefrina , Exocitose/fisiologia
3.
Neurobiol Dis ; 179: 106046, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806818

RESUMO

From a pathogenic perspective, Huntington's disease (HD) is being considered as a synaptopathy. As such, alterations in brain neurotransmitter release occur. As the activity of the sympathoadrenal axis is centrally controlled, deficits in the exocytotic release of catecholamine release may also occur. In fact, in chromaffin cells (CCs) of the adrenal medulla of the R6/1 model of HD, decrease of secretion and altered kinetics of the exocytotic fusion pore have been reported. Those alterations could be linked to mitochondrial deficits occurring in peripheral CCs, similar to those described in brain mitochondria. Here we have inquired about alterations in mitochondrial structure and function and their impact on exocytosis and calcium channel currents (ICa). We have monitored various parameters linked to those events, in wild type (WT) and the R6/1 mouse model of HD at a pre-disease stage (2 months age, 2 m), and when motor deficits are present (7 months age, 7 m). In isolated CCs from 7 m and in the adrenal medulla of R6/1 mice, we found the following alterations (with respect 7 m WT mice): (i) augmented fragmented mitochondria and oxidative stress with increased oxidized glutathione; (ii) decreased basal and maximal respiration; (iii) diminution of ATP cell levels; (iv) mitochondrial depolarization; (v) drastic decrease of catecholamine release with poorer potentiation by protonophore FCCP; (vi) decreased ICa inhibition by FCCP; and (vii) lesser potentiation by BayK8644 of ICa and smaller prolongation of current deactivation. Of note was the fact several of these alterations were already manifested in CCs from 2 m R6/1 mice at pre-disease stages. Based on those results, a plausible hypothesis can be raised in the sense that altered mitochondrial function seems to be an early primary event in HD pathogenesis. This is in line with an increasing number of mitochondrial, metabolic, and inflammatory alterations being recently reported in various HD peripheral tissues.


Assuntos
Células Cromafins , Doença de Huntington , Camundongos , Animais , Doença de Huntington/metabolismo , Cálcio/metabolismo , Camundongos Transgênicos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Células Cromafins/metabolismo , Células Cromafins/patologia , Catecolaminas , Mitocôndrias/metabolismo , Exocitose/fisiologia , Modelos Animais de Doenças
4.
Sensors (Basel) ; 23(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177472

RESUMO

In this paper, we thoroughly analyze the detection of sleep apnea events in the context of Obstructive Sleep Apnea (OSA), which is considered a public health problem because of its high prevalence and serious health implications. We especially evaluate patients who do not always show desaturations during apneic episodes (non-desaturating patients). For this purpose, we use a database (HuGCDN2014-OXI) that includes desaturating and non-desaturating patients, and we use the widely used Physionet Apnea Dataset for a meaningful comparison with prior work. Our system combines features extracted from the Heart-Rate Variability (HRV) and SpO2, and it explores their potential to characterize desaturating and non-desaturating events. The HRV-based features include spectral, cepstral, and nonlinear information (Detrended Fluctuation Analysis (DFA) and Recurrence Quantification Analysis (RQA)). SpO2-based features include temporal (variance) and spectral information. The features feed a Linear Discriminant Analysis (LDA) classifier. The goal is to evaluate the effect of using these features either individually or in combination, especially in non-desaturating patients. The main results for the detection of apneic events are: (a) Physionet success rate of 96.19%, sensitivity of 95.74% and specificity of 95.25% (Area Under Curve (AUC): 0.99); (b) HuGCDN2014-OXI of 87.32%, 83.81% and 88.55% (AUC: 0.934), respectively. The best results for the global diagnosis of OSA patients (HuGCDN2014-OXI) are: success rate of 95.74%, sensitivity of 100%, and specificity of 89.47%. We conclude that combining both features is the most accurate option, especially when there are non-desaturating patterns among the recordings under study.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Frequência Cardíaca/fisiologia , Apneia Obstrutiva do Sono/diagnóstico , Síndromes da Apneia do Sono/diagnóstico , Oximetria , Análise Discriminante
5.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499084

RESUMO

The purinergic receptor P2X7 (P2X7R) is implicated in all neurodegenerative diseases of the central nervous system. It is also involved in the retinal degeneration associated with glaucoma, age-related macular degeneration, and diabetic retinopathy, and its overexpression in the retina is evident in these disorders. Retinitis pigmentosa is a progressive degenerative disease that ultimately leads to blindness. Here, we investigated the expression of P2X7R during disease progression in the rd10 mouse model of RP. As the purinergic receptor P2X4 is widely co-expressed with P2X7R, we also studied its expression in the retina of rd10 mice. The expression of P2X7R and P2X4R was examined by immunohistochemistry, flow cytometry, and western blotting. In addition, we analyzed retinal functionality by electroretinographic recordings of visual responses and optomotor tests and retinal morphology. We found that the expression of P2X7R and P2X4R increased in rd10 mice concomitant with disease progression, but with different cellular localization. Our findings suggest that P2X7R and P2X4R might play an important role in RP progression, which should be further analyzed for the pharmacological treatment of inherited retinal dystrophies.


Assuntos
Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Retinose Pigmentar , Animais , Camundongos , Modelos Animais de Doenças , Progressão da Doença , Eletrorretinografia , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2X7/genética , Retinose Pigmentar/genética , Receptores Purinérgicos P2X4/genética
6.
Entropy (Basel) ; 24(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626571

RESUMO

Methodologies for automatic non-rapid eye movement and cyclic alternating pattern analysis were proposed to examine the signal from one electroencephalogram monopolar derivation for the A phase, cyclic alternating pattern cycles, and cyclic alternating pattern rate assessments. A population composed of subjects free of neurological disorders and subjects diagnosed with sleep-disordered breathing was studied. Parallel classifications were performed for non-rapid eye movement and A phase estimations, examining a one-dimension convolutional neural network (fed with the electroencephalogram signal), a long short-term memory (fed with the electroencephalogram signal or with proposed features), and a feed-forward neural network (fed with proposed features), along with a finite state machine for the cyclic alternating pattern cycle scoring. Two hyper-parameter tuning algorithms were developed to optimize the classifiers. The model with long short-term memory fed with proposed features was found to be the best, with accuracy and area under the receiver operating characteristic curve of 83% and 0.88, respectively, for the A phase classification, while for the non-rapid eye movement estimation, the results were 88% and 0.95, respectively. The cyclic alternating pattern cycle classification accuracy was 79% for the same model, while the cyclic alternating pattern rate percentage error was 22%.

7.
Pflugers Arch ; 473(6): 977-981, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34046754

RESUMO

One hundred years ago, a 4-page paper published in the Pflüger's Archiv fur die Gesamte Physiologie des Menschen und der Tiere dramatically changed our view on synaptic transmission. The paper reported an ingenious, yet straightforward experiment made by Professor Otto Loewi in 1920 and published in 1921, which constitutes the first clear-cut proof for the chemical nature of transmission of the nerve impulse from nerve to muscle. The approach to this experiment was, however, tortuous and long.


Assuntos
Neurofisiologia/história , Transmissão Sináptica , História do Século XX
8.
Pflugers Arch ; 473(2): 273-286, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33108514

RESUMO

Pre-blockade of the sarco-endoplasmic reticulum (ER) calcium ATPase (SERCA) with irreversible thapsigargin depresses exocytosis in adrenal bovine chromaffin cells (BCCs). Distinct expression of voltage-dependent Ca2+-channel subtypes and of the Ca2+-induced Ca2+ release (CICR) mechanism in BCCs versus mouse chromaffin cells (MCCs) has been described. We present a parallel study on the effects of the acute SERCA blockade with reversible cyclopizonic acid (CPA), to repeated pulsing with acetylcholine (ACh) at short (15 s) and long intervals (60 s) at 37 °C, allowing the monitoring of the initial size of a ready-release vesicle pool (RRP) and its depletion and recovery in subsequent stimuli. We found (i) strong depression of exocytosis upon ACh pulsing at 15-s intervals and slower depression at 60-s intervals in both cell types; (ii) facilitation of exocytosis upon acute SERCA inhibition, with back to depression upon CPA washout in MCCs; (iii) blockade of exocytosis upon acute SERCA inhibition and pronounced rebound of exocytosis upon CPA washout in BCCs; (iv) basal [Ca2+]c elevation upon stimulation with ACh at short intervals (but not at long intervals) in both cell types; and (v) augmentation of basal [Ca2+]c and inhibition of peak [Ca2+]c amplitude upon CPA treatment in both cell types, with milder effects upon stimulation at 60-s intervals. These results are compatible with the view that while in MCCs the uptake of Ca2+ via SERCA contributes to the mitigation of physiological ACh triggered secretion, in BCCs the uptake of Ca2+ into the ER facilitates such responses likely potentiating a Ca2+-induced Ca2+ release mechanism. These drastic differences in the regulation of ACh-triggered secretion at 37 °C may help to understand different patterns of the regulation of exocytosis by the circulation of Ca2+ at a functional ER Ca2+ store.


Assuntos
Cálcio/metabolismo , Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Exocitose/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Acetilcolina/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Bovinos , Células Cultivadas , Células Cromafins/enzimologia , Retículo Endoplasmático/enzimologia , Indóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Especificidade da Espécie , Tapsigargina/farmacologia , Fatores de Tempo
9.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360957

RESUMO

In recent years, the "non-autonomous motor neuron death" hypothesis has become more consolidated behind amyotrophic lateral sclerosis (ALS). It postulates that cells other than motor neurons participate in the pathology. In fact, the involvement of the autonomic nervous system is fundamental since patients die of sudden death when they become unable to compensate for cardiorespiratory arrest. Mitochondria are thought to play a fundamental role in the physiopathology of ALS, as they are compromised in multiple ALS models in different cell types, and it also occurs in other neurodegenerative diseases. Our study aimed to uncover mitochondrial alterations in the sympathoadrenal system of a mouse model of ALS, from a structural, bioenergetic and functional perspective during disease instauration. We studied the adrenal chromaffin cell from mutant SOD1G93A mouse at pre-symptomatic and symptomatic stages. The mitochondrial accumulation of the mutated SOD1G93A protein and the down-regulation of optic atrophy protein-1 (OPA1) provoke mitochondrial ultrastructure alterations prior to the onset of clinical symptoms. These changes affect mitochondrial fusion dynamics, triggering mitochondrial maturation impairment and cristae swelling, with increased size of cristae junctions. The functional consequences are a loss of mitochondrial membrane potential and changes in the bioenergetics profile, with reduced maximal respiration and spare respiratory capacity of mitochondria, as well as enhanced production of reactive oxygen species. This study identifies mitochondrial dynamics regulator OPA1 as an interesting therapeutic target in ALS. Additionally, our findings in the adrenal medulla gland from presymptomatic stages highlight the relevance of sympathetic impairment in this disease. Specifically, we show new SOD1G93A toxicity pathways affecting cellular energy metabolism in non-motor neurons, which offer a possible link between cell specific metabolic phenotype and the progression of ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Superóxido Dismutase-1/genética , Glândulas Suprarrenais/citologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Células Cromafins/metabolismo , Regulação para Baixo , GTP Fosfo-Hidrolases/genética , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/ultraestrutura , Mutação de Sentido Incorreto , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo
10.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008868

RESUMO

Upon depolarization of chromaffin cells (CCs), a prompt release of catecholamines occurs. This event is triggered by a subplasmalemmal high-Ca2+ microdomain (HCMD) generated by Ca2+ entry through nearby voltage-activated calcium channels. HCMD is efficiently cleared by local mitochondria that avidly take up Ca2+ through their uniporter (MICU), then released back to the cytosol through mitochondrial Na+/Ca2+ exchanger (MNCX). We found that newly synthesized derivative ITH15004 facilitated the release of catecholamines triggered from high K+-depolarized bovine CCs. Such effect seemed to be due to regulation of mitochondrial Ca2+ circulation because: (i) FCCP-potentiated secretory responses decay was prevented by ITH15004; (ii) combination of FCCP and ITH15004 exerted additive secretion potentiation; (iii) such additive potentiation was dissipated by the MICU blocker ruthenium red (RR) or the MNCX blocker CGP37157 (CGP); (iv) combination of FCCP and ITH15004 produced both additive augmentation of cytosolic Ca2+ concentrations ([Ca2+]c) K+-challenged BCCs, and (v) non-inactivated [Ca2+]c transient when exposed to RR or CGP. On pharmacological grounds, data suggest that ITH15004 facilitates exocytosis by acting on mitochondria-controlled Ca2+ handling during K+ depolarization. These observations clearly show that ITH15004 is a novel pharmacological tool to study the role of mitochondria in the regulation of the bioenergetics and exocytosis in excitable cells.


Assuntos
Cálcio , Catecolaminas , Células Cromafins , Exocitose , Mitocôndrias , Animais , Bovinos , Cálcio/metabolismo , Sinalização do Cálcio , Catecolaminas/metabolismo , Células Cultivadas , Células Cromafins/citologia , Células Cromafins/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Cultura Primária de Células
11.
Med Res Rev ; 40(6): 2427-2465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32677086

RESUMO

Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs. As purinergic P2X7 receptors (P2X7Rs) are gatekeepers of inflammation, they could be developed as drug targets for NDDs. Herein, we review this challenging hypothesis and comment on the numerous studies that have investigated P2X7Rs, emphasizing their molecular structure and functions, as well as their role in inflammation. Then, we elaborate on research undertaken in the field of medicinal chemistry to determine potential P2X7R antagonists. Subsequently, we review the state of neuroinflammation and P2X7R expression in the brain, in animal models and patients suffering from AD, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and retinal degeneration. Next, we summarize the in vivo studies testing the hypothesis that by mitigating neuroinflammation, P2X7R blockers afford neuroprotection, increasing neuroplasticity and neuronal repair in animal models of NDDs. Finally, we reviewed previous and ongoing CTs investigating compounds directed toward targets associated with NDDs; we propose that CTs with P2X7R antagonists should be initiated. Despite the high expectations for putative P2X7Rs antagonists in various central nervous system diseases, the field is moving forward at a relatively slow pace, presumably due to the complexity of P2X7Rs. A better pharmacological approach to combat NDDs would be a dual strategy, combining P2X7R antagonism with drugs targeting a selective pathway in a given NDD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Preparações Farmacêuticas , Animais , Humanos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7
12.
Cell Physiol Biochem ; 54(1): 142-159, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32028545

RESUMO

BACKGROUND/AIMS: It is well established that oxidative stress and inflammation are common pathogenic features of retinal degenerative diseases. ITH12674 is a novel compound that induces the transcription factor Nrf2; in so doing, the molecule exhibits anti-inflammatory, and antioxidant properties, and affords neuroprotection in rat cortical neurons subjected to oxidative stress. We here tested the hypothesis that ITH12674 could slow the retinal degeneration that causes blindness in rd10 mice, a model of retinitis pigmentosa. METHODS: Animals were intraperitoneally treated with 1 or 10 mg/Kg ITH12674 or placebo from P16 to P30. At P30, retinal functionality and visual acuity were analyzed by electroretinography and optomotor test. By immunohistochemistry we quantified the photoreceptor rows and analyzed their morphology and connectivity. Oxidative stress and inflammatory state was studied by Western blot, and microglia reactivity was monitored by flow cytometry. The blood-brain barrier permeation of ITH12674 was evaluated using a PAMPA-BBB assay. RESULTS: In rd10 mice treated with 10 mg/Kg of the compound, the following changes were observed (with respect to placebo): (i) a decrease of vision loss with higher scotopic a- and b-waves; (ii) increased visual acuity; (iii) preservation of cone photoreceptors morphology, as well as their synaptic connectivity; (iv) reduced expression of TNF-α and NF-κB; (v) increased expression of p38 MAPK and Atg12-Atg5 complex; and (vi) decreased CD11c, MHC class II and CD169 positive cell populations. CONCLUSION: These data support the view that a Nrf2 inducer compound may arise as a new therapeutic strategy to combat retinal neurodegeneration. At present, we are chemically optimising compound ITH12674 with the focus on improving its neuroprotective potential in retinal neurodegenerative diseases.


Assuntos
Isotiocianatos/uso terapêutico , Melatonina/análogos & derivados , Fator 2 Relacionado a NF-E2/agonistas , Retinose Pigmentar/tratamento farmacológico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/química , Isotiocianatos/farmacologia , Masculino , Melatonina/química , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/patologia , Retina/efeitos dos fármacos , Retina/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Fator de Necrose Tumoral alfa/metabolismo , Acuidade Visual/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Sensors (Basel) ; 20(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046102

RESUMO

Sleep related disorders can severely disturb the quality of sleep. Among these disorders, obstructive sleep apnea (OSA) is highly prevalent and commonly undiagnosed. Polysomnography is considered to be the gold standard exam for OSA diagnosis. Even though this multi-parametric test provides highly accurate results, it is time consuming, labor-intensive, and expensive. A non-invasive and easy to self-assemble home monitoring device was developed to address these issues. The device can perform the OSA diagnosis at the patient's home and a specialized technician is not required to supervise the process. An automatic scoring algorithm was developed to examine the blood oxygen saturation signal for a minute-by-minute OSA assessment. It was performed by analyzing statistical and frequency-based features that were fed to a classifier. Afterward, the ratio of the number of minutes classified as OSA to the time in bed in minutes was compared with a threshold for the global (subject-based) OSA diagnosis. The average accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve for the minute-by-minute assessment were, respectively, 88%, 80%, 91%, and 0.86. The subject-based accuracy was 95%. The performance is in the same range as the best state of the art methods for the models based only on the blood oxygen saturation analysis. Therefore, the developed model has the potential to be employed in clinical analysis.


Assuntos
Oximetria/métodos , Síndromes da Apneia do Sono/diagnóstico , Tecnologia sem Fio , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia , Análise de Regressão , Interface Usuário-Computador , Adulto Jovem
14.
Drug Dev Res ; 81(3): 283-294, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693218

RESUMO

Two multitarget hybrids, derived from an aza-analogue of CGP37157, a mitochondrial Na+ /Ca2+ exchanger antagonist, and lipoic acid were designed in order to combine in a single molecule the antioxidant and Nrf2 induction properties of lipoic acid and the neuroprotective activity of CGP37157. The hybrid derivatives showed Nrf2 induction and radical scavenging properties, leading to a good neuroprotective profile against oxidative stress, together with an interesting antineuroinflammatory activity. The results obtained show differences in activity depending on the configuration of the chiral center of LA.


Assuntos
Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Tiazepinas/farmacologia , Ácido Tióctico/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Linhagem Celular , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tiazepinas/química , Ácido Tióctico/química
15.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178443

RESUMO

Synaptic disruption and altered neurotransmitter release occurs in the brains of patients and in murine models of neurodegenerative diseases (NDDs). During the last few years, evidence has accumulated suggesting that the sympathoadrenal axis is also affected as disease progresses. Here, we review a few studies done in adrenal medullary chromaffin cells (CCs), that are considered as the amplifying arm of the sympathetic nervous system; the sudden fast exocytotic release of their catecholamines-stored in noradrenergic and adrenergic cells-plays a fundamental role in the stress fight-or-flight response. Bulk exocytosis and the fine kinetics of single-vesicle exocytotic events have been studied in mouse models carrying a mutation linked to NDDs. For instance, in R6/1 mouse models of Huntington's disease (HD), mutated huntingtin is overexpressed in CCs; this causes decreased quantal secretion, smaller quantal size and faster kinetics of the exocytotic fusion pore, pore expansion, and closure. This was accompanied by decreased sodium current, decreased acetylcholine-evoked action potentials, and attenuated [Ca2+]c transients with faster Ca2+ clearance. In the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS), CCs exhibited secretory single-vesicle spikes with a slower release rate but higher exocytosis. Finally, in the APP/PS1 mouse model of Alzheimer's disease (AD), the stabilization, expansion, and closure of the fusion pore was faster, but the secretion was attenuated. Additionally, α-synuclein that is associated with Parkinson's disease (PD) decreases exocytosis and promotes fusion pore dilation in adrenal CCs. Furthermore, Huntington-associated protein 1 (HAP1) interacts with the huntingtin that, when mutated, causes Huntington's disease (HD); HAP1 reduces full fusion exocytosis by affecting vesicle docking and controlling fusion pore stabilization. The alterations described here are consistent with the hypothesis that central alterations undergone in various NDDs are also manifested at the peripheral sympathoadrenal axis to impair the stress fight-or-flight response in patients suffering from those diseases. Such alterations may occur: (i) primarily by the expression of mutated disease proteins in CCs; (ii) secondarily to stress adaptation imposed by disease progression and the limitations of patient autonomy.


Assuntos
Células Cromafins/fisiologia , Exocitose/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Camundongos , Vesículas Secretórias/fisiologia , Transmissão Sináptica/fisiologia
16.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171955

RESUMO

We have investigated whether the stress response mediated by the adrenal medulla in rats subjected to chronic constriction injury of the sciatic nerve (CCI) modulates their nocifensive behavior. Treatment with SK29661 (300 mg/kg; intraperitoneal (I.P.)), a selective inhibitor of phenylethanolamine N-methyltransferase (PNMT) that converts noradrenaline (NA) into adrenaline (A), fully reverted mechanical allodynia in the injured hind paw without affecting mechanical sensitivity in the contralateral paw. The effect was fast and reversible and was associated with a decrease in the A to NA ratio (A/NA) in the adrenal gland and circulating blood, an A/NA that was elevated by CCI. 1,2,3,4-tetrahydroisoquinoline-7-sulfonamide (SKF29661) did not affect exocytosis evoked by Ca2+ entry as well as major ionic conductances (voltage-gated Na+, Ca2+, and K+ channels, nicotinic acetylcholine receptors) involved in stimulus-secretion coupling in chromaffin cells, suggesting that it acted by changing the relative content of the two adrenal catecholamines. Denervation of the adrenal medulla by surgical splanchnectomy attenuated mechanical allodynia in neuropathic animals, hence confirming the involvement of the adrenal medulla in the pathophysiology of the CCI model. Inhibition of PNMT appears to be an effective and probably safe way to modulate adrenal medulla activity and, in turn, to alleviate pain secondary to the injury of a peripheral nerve.


Assuntos
Medula Suprarrenal/fisiologia , Hiperalgesia/fisiopatologia , Neuralgia/metabolismo , Glândulas Suprarrenais/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Catecolaminas/farmacologia , Células Cromafins/efeitos dos fármacos , Modelos Animais de Doenças , Epinefrina/metabolismo , Hiperalgesia/metabolismo , Masculino , Neuralgia/fisiopatologia , Norepinefrina/metabolismo , Feniletanolamina N-Metiltransferase/antagonistas & inibidores , Feniletanolamina N-Metiltransferase/metabolismo , Ratos , Ratos Sprague-Dawley
17.
J Pharmacol Exp Ther ; 371(1): 219-230, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209099

RESUMO

Vesicular monoamine transporter-2 is expressed in the presynaptic secretory vesicles membrane in the brain. Its blockade by tetrabenazine (TBZ) causes depletion of dopamine at striatal basal ganglia; this is the mechanism underlying its long-standing use in the treatment of Huntington's disease. In the frame of a project aimed at investigating the kinetics of exocytosis from vesicles with partial emptying of their neurotransmitter, we unexpectedly found that TBZ facilitates exocytosis; thus, we decided to characterize such effect. We used bovine chromaffin cells (BCCs) challenged with repeated pulses of high K+ Upon repeated K+ pulsing, the exocytotic catecholamine release responses were gradually decaying. However, when cells were exposed to TBZ, responses were mildly augmented and decay rate delayed. Facilitation of exocytosis was not due to Ca2+ entry blockade through voltage-activated calcium channels (VACCs) because, in fact, TBZ mildly blocked the whole-cell Ca2+ current. However, TBZ mimicked the facilitatory effects of exocytosis elicited by BayK8644 (L-subtype VACC agonist), an effect blocked by nifedipine (VACC antagonist). On the basis that TBZ augmented the secretory responses to caffeine (but not those of histamine), we monitored its effects on cytosolic Ca2+ elevations ([Ca2+]c) triggered by caffeine or histamine. While the responses to caffeine were augmented twice by TBZ, those of histamine were unaffected; the same happened in rat cortical neurons. Hence, we hypothesize that TBZ facilitates exocytosis by increasing Ca2+ release through the endoplasmic reticulum ryanodine receptor channel (RyR). Confirming this hypothesis are docking results, showing an interaction of TBZ with RyRs. This is consonant with the existence of a healthy Ca2+-induced-Ca2+-release mechanism in BCCs. SIGNIFICANCE STATEMENT: A novel mechanism of action for tetrabenazine (TBZ), a drug used in the therapy of Huntington's disease (HD), is described here. Such mechanism consists of facilitation by combining TBZ with the ryanodine receptor of the endoplasmic reticulum, thereby increasing Ca2+-induced Ca2+ release. This novel mechanism should be taken into account when considering the efficacy and/or safety of TBZ in the treatment of chorea associated with HD and other disorders. Additionally, it could be of interest in the development of novel medicines to treat these pathological conditions.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Sinalização do Cálcio , Células Cromafins/efeitos dos fármacos , Exocitose , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Tetrabenazina/farmacologia , Animais , Sítios de Ligação , Canais de Cálcio Tipo N/metabolismo , Bovinos , Células Cultivadas , Células Cromafins/metabolismo , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química
19.
Sensors (Basel) ; 19(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726771

RESUMO

Sleep apnea is a sleep related disorder that significantly affects the population. Polysomnography, the gold standard, is expensive, inaccessible, uncomfortable and an expert technician is needed to score. Numerous researchers have proposed and implemented automatic scoring processes to address these issues, based on fewer sensors and automatic classification algorithms. Deep learning is gaining higher interest due to database availability, newly developed techniques, the possibility of producing machine created features and higher computing power that allows the algorithms to achieve better performance than the shallow classifiers. Therefore, the sleep apnea research has currently gained significant interest in deep learning. The goal of this work is to analyze the published research in the last decade, providing an answer to the research questions such as how to implement the different deep networks, what kind of pre-processing or feature extraction is needed, and the advantages and disadvantages of different kinds of networks. The employed signals, sensors, databases and implementation challenges were also considered. A systematic search was conducted on five indexing services from 2008-2018. A total of 255 papers were found and 21 were selected by considering the inclusion and exclusion criteria, using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach.


Assuntos
Aprendizado Profundo , Síndromes da Apneia do Sono/diagnóstico , Humanos , Redes Neurais de Computação
20.
Pflugers Arch ; 470(8): 1255-1270, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29721607

RESUMO

Gasotransmitter hydrogen sulphide (H2S) has emerged as a regulator of multiple physiological and pathophysiological processes throughout. Here, we have investigated the effects of NaHS (fast donor of H2S) and GYY4137 (GYY, slow donor of H2S) on the exocytotic release of catecholamines from fast-perifused bovine adrenal chromaffin cells (BCCs) challenged with sequential intermittent pulses of a K+-depolarizing solution. Both donors caused a concentration-dependent facilitation of secretion. This was not due to an augmentation of Ca2+ entry through voltage-activated Ca2+ channels (VACCs) because, in fact, NaHS and GYY caused a mild inhibition of whole-cell Ca2+ currents. Rather, the facilitation of exocytosis seemed to be associated to an augmented basal [Ca2+]c and the K+-elicited [Ca2+]c transients; such effects of H2S donors are aborted by cyclopiazonic acid (CPA), that causes endoplasmic reticulum (ER) Ca2+ depletion through sarcoendoplasmic reticulum Ca2+ ATPase inhibition and by protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), that impedes the ability of mitochondria to sequester cytosolic Ca2+ during cell depolarization. Inasmuch as CPA and FCCP reversed the facilitation of secretion triggered by K+ in the presence of NaHS and GYY, is seems that such facilitation is tightly coupled to Ca2+ handling by the ER and mitochondria. On the basis of these results, we propose that H2S regulates catecholamine secretory responses triggered by K+ in BCCs by (i) mobilisation of ER Ca2+ and (ii) interference with mitochondrial Ca2+ circulation. In so doing, the clearance of the [Ca2+]c transient will be delayed and the Ca2+-dependent trafficking of secretory vesicles will be enhanced to overfill the secretory machinery with new vesicles to enhance exocytosis.


Assuntos
Cálcio/metabolismo , Células Cromafins/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Catecolaminas/metabolismo , Bovinos , Células Cultivadas , Células Cromafins/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa