RESUMO
This paper presents inversion results for three datasets collected on three spatially separated mud depocenters (hereafter called mud ponds) during the 2022 Seabed Characterization Experiment (SBCEX). The data considered here represent modal time-frequency (TF) dispersion as estimated from a single hydrophone. Inversion is performed using a trans-dimensional (trans-D) Bayesian inference method that jointly estimates water-column and seabed properties along with associated uncertainties. This enables successful estimation of the seafloor properties, consistent with in situ acoustic core measurements, even when the water column is dynamical and mostly unknown. A quantitative analysis is performed to (1) compare results with previous modal TF trans-D studies for one mud pond but under different oceanographic condition, and (2) inter-compare the new SBCEX22 results for the three mud ponds. Overall, the estimated mud geoacoustic properties show no significant temporal variability. Further, no significant spatial variability is found between two of the mud ponds while the estimated geoacoustic properties of the third are different. Two hypotheses, considered to be equally likely, are explored to explain this apparent spatial variability: it may be the result of actual differences in the mud properties, or the mud properties may be similar but the inversion results are driven by difference in data information content.
RESUMO
This paper reports on an original set of direct sound speed measurements collected with the acoustic coring system in the New England Mud Patch (NEMP) and shelf break area to the south. Cores collected within the NEMP show range-dependence of the mud with slower sound speed and lower attenuation on the west side. In the shelf break region, the highest sound speeds are observed between the 200- and 350-m isobaths. The depth-dependence of the mud layer in the NEMP includes a surficial layer with a negative sound speed gradient of 28 s-1. The remainder of the mud column has a weak positive sound speed gradient of 6.2 s-1 over an isovelocity layer. Comparison between in situ and ex situ sound speed measurements provides an assessment of the effects of sediment disturbance from gravity coring operations. Small differences in the upper 2.5 m were attributed to the changes in the geoacoustic properties caused by disturbance from the coring process. Below 2.5 m, the average difference is close to zero, suggesting that these sediments were minimally disturbed. Finally, an in situ measurement of shear speed was obtained near the depth of maximum penetration. The shear speed was well correlated with sound speed from approximately the same depth interval.