RESUMO
Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) hold great promise for liver disease modeling, drug discovery, and drug toxicity screens. Yet, several hurdles still need to be overcome, including among others decrease in the cost of goods to generate HLCs and automation of the differentiation process. We here describe that the use of an automated liquid handling system results in highly reproducible HLC differentiation from hPSCs. This enabled us to screen 92 chemicals to replace expensive growth factors at each step of the differentiation protocol to reduce the cost of goods of the differentiation protocol by approximately 79%. In addition, we also evaluated several recombinant extracellular matrices to replace Matrigel. We demonstrated that differentiation of hPSCs on Laminin-521 using an optimized small molecule combination resulted in HLCs that were transcriptionally identical to HLCs generated using the growth factor combinations. In addition, the HLCs created using the optimized small molecule combination secreted similar amounts of albumin and urea, and relatively low concentrations of alfa-fetoprotein, displayed similar CYP3A4 functionality, and a similar drug toxicity susceptibility as HLCs generated with growth factor cocktails. The broad applicability of the new differentiation protocol was demonstrated for 4 different hPSC lines. This allowed the creation of a scalable, xeno-free, and cost-efficient hPSC-derived HLC culture, suitable for high throughput disease modeling and drug screenings, or even for the creation of HLCs for regenerative therapies.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Diferenciação Celular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismoRESUMO
Drug induced fatty liver disease (DIFLD) is a form of drug-induced liver injury (DILI), which can also be included in the more general metabolic dysfunction-associated steatotic liver disease (MASLD), which specifically refers to the accumulation of fat in the liver unrelated to alcohol intake. A bi-directional relationship between DILI and MASLD is likely to exist: while certain drugs can cause MASLD by acting as pro-steatogenic factors, MASLD may make hepatocytes more vulnerable to drugs. Having a pre-existing MASLD significantly heightens the likelihood of experiencing DILI from certain medications. Thus, the prevalence of steatosis within DILI may be biased by pre-existing MASLD, and it can be concluded that the genuine true incidence of DIFLD in the general population remains unknown. In certain individuals, drug-induced steatosis is often accompanied by concomitant injury mechanisms such as oxidative stress, cell death, and inflammation, which leads to the development of drug-induced steatohepatitis (DISH). DISH is much more severe from the clinical point of view, has worse prognosis and outcome, and resembles MASH (metabolic-associated steatohepatitis), as it is associated with inflammation and sometimes with fibrosis. A literature review of clinical case reports allowed us to examine and evaluate the clinical features of DIFLD and their association with specific drugs, enabling us to propose a classification of DIFLD drugs based on clinical outcomes and pathological severity: Group 1, drugs with low intrinsic toxicity (e.g., ibuprofen, naproxen, acetaminophen, irinotecan, methotrexate, and tamoxifen), but expected to promote/aggravate steatosis in patients with pre-existing MASLD; Group 2, drugs associated with steatosis and only occasionally with steatohepatitis (e.g., amiodarone, valproic acid, and tetracycline); and Group 3, drugs with a great tendency to transit to steatohepatitis and further to fibrosis. Different mechanisms may be in play when identifying drug mode of action: (1) inhibition of mitochondrial fatty acid ß-oxidation; (2) inhibition of fatty acid transport across mitochondrial membranes; (3) increased de novo lipid synthesis; (4) reduction in lipid export by the inhibition of microsomal triglyceride transfer protein; (5) induction of mitochondrial permeability transition pore opening; (6) dissipation of the mitochondrial transmembrane potential; (7) impairment of the mitochondrial respiratory chain/oxidative phosphorylation; (8) mitochondrial DNA damage, degradation and depletion; and (9) nuclear receptors (NRs)/transcriptomic alterations. Currently, the majority of, if not all, adverse outcome pathways (AOPs) for steatosis in AOP-Wiki highlight the interaction with NRs or transcription factors as the key molecular initiating event (MIE). This perspective suggests that chemical-induced steatosis typically results from the interplay between a chemical and a NR or transcription factors, implying that this interaction represents the primary and pivotal MIE. However, upon conducting this exhaustive literature review, it became evident that the current AOPs tend to overly emphasize this interaction as the sole MIE. Some studies indeed support the involvement of NRs in steatosis, but others demonstrate that such NR interactions alone do not necessarily lead to steatosis. This view, ignoring other mitochondrial-related injury mechanisms, falls short in encapsulating the intricate biological mechanisms involved in chemically induced liver steatosis, necessitating their consideration as part of the AOP's map road as well.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado Gorduroso , Humanos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/induzido quimicamente , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Rotas de Resultados Adversos , Fígado/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Estresse OxidativoRESUMO
Typical protocols to differentiate induced pluripotent stem cells (iPSCs) from hepatocyte-like cells (HLCs) imply complex strategies that include transfection with key hepatic transcription factors and the addition to culture media of nutrients, growth factors, and cytokines. A main constraint to evaluate the hepatic phenotype achieved arises from the way the grade of differentiation is determined. Currently, it relies on the assessment of the expression of a limited number of hepatic gene transcripts, less frequently by assessing certain hepatic metabolic functions, and rarely by the global metabolic performance of differentiated cells. We envisaged a new strategy to assess the extent of differentiation achieved, based on the analysis of the cellular metabolome along the differentiation process and its quantitative comparison with that of primary human hepatocytes (PHHs). To validate our approach, we examined the changes in the metabolome of three iPSC progenies (transfected with/without key transcription factors), cultured in three differentiation media, and compared them to PHHs. Results revealed consistent metabolome changes along differentiation and evidenced the factors that more strongly promote changes in the metabolome. The integrated dissimilarities between the PHHs and HLCs retrieved metabolomes were used as a numerical reference for quantifying the degree of iPSCs differentiation. This newly developed metabolome-analysis approach evidenced its utility in assisting us to select a cell's source, culture conditions, and differentiation media, to achieve better-differentiated HLCs.
Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/genética , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Hepatócitos/metabolismo , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: High-throughput pharmaco-toxicological testing frequently relies on the use of established liver-derived cell lines, such as HepG2 cells. However, these cells often display limited hepatic phenotype and features of neoplastic transformation that may bias the interpretation of the results. Alternate models based on primary cultures or differentiated pluripotent stem cells are costly to handle and difficult to implement in high-throughput screening platforms. Thus, cells without malignant traits, optimal differentiation pattern, producible in large and homogeneous amounts and with patient-specific phenotypes would be desirable. METHODS: We have designed and implemented a novel and robust approach to obtain hepatocytes from individuals by direct reprogramming, which is based on a combination of a single doxycycline-inducible polycistronic vector system expressing HNF4A, HNF1A and FOXA3, introduced in human fibroblasts previously transduced with human telomerase reverse transcriptase (hTERT). These cells can be maintained in fibroblast culture media, under standard cell culture conditions. RESULTS: Clonal hTERT-transduced human fibroblast cell lines can be expanded at least to 110 population doublings without signs of transformation or senescence. They can be easily differentiated at any cell passage number to hepatocyte-like cells with the simple addition of doxycycline to culture media. Acquisition of a hepatocyte phenotype is achieved in just 10 days and requires a simple and non-expensive cell culture media and standard 2D culture conditions. Hepatocytes reprogrammed from low and high passage hTERT-transduced fibroblasts display very similar transcriptomic profiles, biotransformation activities and show analogous pattern behavior in toxicometabolomic studies. Results indicate that this cell model outperforms HepG2 in toxicological screening. The procedure also allows generation of hepatocyte-like cells from patients with given pathological phenotypes. In fact, we succeeded in generating hepatocyte-like cells from a patient with alpha-1 antitrypsin deficiency, which recapitulated accumulation of intracellular alpha-1 antitrypsin polymers and deregulation of unfolded protein response and inflammatory networks. CONCLUSION: Our strategy allows the generation of an unlimited source of clonal, homogeneous, non-transformed induced hepatocyte-like cells, capable of performing typical hepatic functions and suitable for pharmaco-toxicological high-throughput testing. Moreover, as far as hepatocyte-like cells derived from fibroblasts isolated from patients suffering hepatic dysfunctions, retain the disease traits, as demonstrated for alpha-1-antitrypsin deficiency, this strategy can be applied to the study of other cases of anomalous hepatocyte functionality.
Assuntos
Doxiciclina , Hepatócitos , Humanos , Doxiciclina/farmacologia , Hepatócitos/metabolismo , Fígado , Linhagem Celular , Diferenciação Celular/genéticaRESUMO
The diagnosis of inherited metabolic disorders is a long and tedious process. The matching of clinical data with a genomic variant in a specific metabolic pathway is an essential step, but the link between a genome and the clinical data is normally difficult, primarily for new missense variants or alterations in intron sequences. Notwithstanding, elucidation of the pathogenicity of a specific variant might be critical for an accurate diagnosis. In this study, we described a novel intronic variant c.2597 + 5G > T in the donor splice sequence of the PHKA2 gene. To investigate PHKA2 mRNA splicing, as well as the functional consequences on glycogen metabolism, we generated hepatocyte-like cells from a proband's fibroblasts by direct reprogramming. We demonstrated an aberrant splicing of PHKA2, resulting in the incorporation of a 27 bp upstream of intron 23 into exon 23, which leads to an immediate premature STOP codon. The truncated protein was unable to phosphorylate the PYGL protein, causing a 4-fold increase in the accumulation of glycogen in hepatocyte-like cells. Collectively, the generation of personalized hepatocyte-like cells enabled an unequivocal molecular diagnosis and qualified the sister's proband, a carrier of the same mutation, as a candidate for a preimplantation genetic diagnosis. Additionally, our direct reprogramming strategy allows for an unlimited source of "diseased" hepatocyte-like cells compatible with high-throughput platforms.
RESUMO
Autologous cell replacement therapy for inherited metabolic disorders requires the correction of the underlying genetic mutation in patient's cells. An unexplored alternative for females affected from X-linked diseases is the clonal selection of cells randomly silencing the X-chromosome containing the mutant allele, without in vivo or ex vivo genome editing. In this report, we have isolated dermal fibroblasts from a female patient affected of ornithine transcarbamylase deficiency and obtained clones based on inactivation status of either maternally or paternally inherited X chromosome, followed by differentiation to hepatocytes. Hepatocyte-like cells derived from these clones display indistinct features characteristic of hepatocytes, but express either the mutant or wild type OTC allele depending on X-inactivation pattern. When clonally derived hepatocyte-like cells were transplanted into FRG® KO mice, they were able to colonize the liver and recapitulate OTC-dependent phenotype conditioned by X-chromosome inactivation pattern. This approach opens new strategies for cell therapy of X-linked metabolic diseases and experimental in vitro models for drug development for such diseases.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Hepatócitos , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Inativação do Cromossomo X/genética , Alelos , Animais , Diferenciação Celular , Células Cultivadas , Células Clonais , Derme/citologia , Feminino , Fibroblastos , Hepatócitos/transplante , Humanos , Camundongos Knockout , Mutação , Cromossomo X/genéticaRESUMO
REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) is a global strategy and regulation policy of the EU that aims to improve the protection of human health and the environment through the better and earlier identification of the intrinsic properties of chemical substances. It entered into force on 1st June 2007 (EC 1907/2006). REACH and EU policies plead for the use of robust high-throughput "omic" techniques for the in vitro investigation of the toxicity of chemicals that can provide an estimation of their hazards as well as information regarding the underlying mechanisms of toxicity. In agreement with the 3R's principles, cultured cells are nowadays widely used for this purpose, where metabolomics can provide a real-time picture of the metabolic effects caused by exposure of cells to xenobiotics, enabling the estimations about their toxicological hazards. High quality and robust metabolomics data sets are essential for precise and accurate hazard predictions. Currently, the acquisition of consistent and representative metabolomic data is hampered by experimental drawbacks that hinder reproducibility and difficult robust hazard interpretation. Using the differentiated human liver HepG2 cells as model system, and incubating with hepatotoxic (acetaminophen and valproic acid) and non-hepatotoxic compounds (citric acid), we evaluated in-depth the impact of several key experimental factors (namely, cell passage, processing day and storage time, and compound treatment) and instrumental factors (batch effect) on the outcome of an UPLC-MS metabolomic analysis data set. Results showed that processing day and storage time had a significant impact on the retrieved cell's metabolome, while the effect of cell passage was minor. Meta-analysis of results from pathway analysis showed that batch effect corrections and quality control (QC) measures are critical to enable consistent and meaningful estimations of the effects caused by compounds on cells. The quantitative analysis of the changes in metabolic pathways upon bioactive compound treatment remained consistent despite the concurrent causes of metabolomic data variation. Thus, upon appropriate data retrieval and correction and by an innovative metabolic pathway analysis, the metabolic alteration predictions remained conclusive despite the acknowledged sources of variability.