Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Alzheimers Dement ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780014

RESUMO

This perspective offers an alternative to the amyloid hypothesis in the etiology of Alzheimer's disease (AD). We review evidence for a novel signaling mechanism based on a little-known peptide, T14. T14 could drive neurodegeneration as an aberrantly activated process of plasticity selective to interconnecting subcortical nuclei, the isodendritic core, where cell loss starts at the pre-symptomatic stages of the disease. Each of these cell groups has the capacity to form T14, which can stimulate production of p-Tau and ß-amyloid, suggestive of an upstream driver of neurodegeneration. Moreover, results in an animal AD model show that antagonism of T14 with a cyclated variant, NBP14, prevents formation of ß-amyloid, and restores cognitive function to that of wild-type counterparts. Any diagnostic and/or therapeutic strategy based on T14-NBP14 awaits validation in clinical trials. However, an understanding of this novel signaling system could bring much-needed fresh insights into the progression of cell loss underlying AD. HIGHLIGHTS: The possible primary mechanism of neurodegeneration upstream of amyloid. Primary involvement of selectively vulnerable subcortical nuclei, isodendritic core. Bioactive peptide T14 trophic in development but toxic in context of mature brain. Potential for early-stage biomarker to detect Alzheimer's disease. Effective therapeutic halting neurodegeneration, validated already in 5XFAD mice.

2.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373106

RESUMO

T14 modulates calcium influx via the α-7 nicotinic acetylcholine receptor to regulate cell growth. Inappropriate triggering of this process has been implicated in Alzheimer's disease (AD) and cancer, whereas T14 blockade has proven therapeutic potential in in vitro, ex vivo and in vivo models of these pathologies. Mammalian target of rapamycin complex 1 (mTORC1) is critical for growth, however its hyperactivation is implicated in AD and cancer. T14 is a product of the longer 30mer-T30. Recent work shows that T30 drives neurite growth in the human SH-SY5Y cell line via the mTOR pathway. Here, we demonstrate that T30 induces an increase in mTORC1 in PC12 cells, and ex vivo rat brain slices containing substantia nigra, but not mTORC2. The increase in mTORC1 by T30 in PC12 cells is attenuated by its blocker, NBP14. Moreover, in post-mortem human midbrain, T14 levels correlate significantly with mTORC1. Silencing mTORC1 reverses the effects of T30 on PC12 cells measured via AChE release in undifferentiated PC12 cells, whilst silencing mTORC2 does not. This suggests that T14 acts selectively via mTORC1. T14 blockade offers a preferable alternative to currently available blockers of mTOR as it would enable selective blockade of mTORC1, thereby reducing side effects associated with generalised mTOR blockade.


Assuntos
Doença de Alzheimer , Neuroblastoma , Ratos , Animais , Humanos , Sirolimo/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Peptídeos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Doença de Alzheimer/patologia , Mamíferos/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361905

RESUMO

The substantia nigra is generally considered to show significant cell loss not only in Parkinson's but also in Alzheimer's disease, conditions that share several neuropathological traits. An interesting feature of this nucleus is that the pars compacta dopaminergic neurons contain acetylcholinesterase (AChE). Independent of its enzymatic role, this protein is released from pars reticulata dendrites, with effects that have been observed in vitro, ex vivo and in vivo. The part of the molecule responsible for these actions has been identified as a 14-mer peptide, T14, cleaved from the AChE C-terminus and acting at an allosteric site on alpha-7 nicotinic receptors, with consequences implicated in neurodegeneration. Here, we show that free T14 is co-localized with tyrosine hydroxylase in rodent pars compacta neurons. In brains with Alzheimer's pathology, the T14 immunoreactivity in these neurons increases in density as their number decreases with the progression of the disease. To explore the functional implications of raised T14 levels in the substantia nigra, the effect of exogenous peptide on electrically evoked neuronal activation was tested in rat brain slices using optical imaging with a voltage-sensitive dye (Di-4-ANEPPS). A significant reduction in the activation response was observed; this was blocked by the cyclized variant of T14, NBP14. In contrast, no such effect of the peptide was seen in the striatum, a region lacking the T14 target, alpha-7 receptors. These findings add to the accumulating evidence that T14 is a key signaling molecule in neurodegenerative disorders and that its antagonist NBP14 has therapeutic potential.


Assuntos
Doenças Neurodegenerativas , Ratos , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Acetilcolinesterase/metabolismo , Roedores/metabolismo , Substância Negra/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
4.
Mol Neurobiol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483654

RESUMO

T14, a 14mer peptide, is significantly increased in the pre-symptomatic Alzheimer's disease brain, and growing evidence implies its pivotal role in neurodegeneration. Here, we explore the subsequent intracellular events following binding of T14 to its target α7 nicotinic acetylcholine receptor (nAChR). Specifically, we test how various experimental manipulations of PC12 cells impact T14-induced functional outcomes. Three preparations were compared: (i) undifferentiated vs. NGF-differentiated cells; (ii) cells transfected with an overexpression of the target α7 nAChR vs. wild type cells; (iii) cells transfected with a mutant α7 nAChR containing a mutation in the G protein-binding cluster, vs. cells transfected with an overexpression of the target α7 nAChR, in three functional assays - calcium influx, cell viability, and acetylcholinesterase release. NGF-differentiated PC12 cells were less sensitive than undifferentiated cells to the concentration-dependent T14 treatment, in all the functional assays performed. The overexpression of α7 nAChR in PC12 cells promoted enhanced calcium influx when compared with the wild type PC12 cells. The α7345-348 A mutation effectively abolished the T14-triggered responses across all the readouts observed. The close relationship between T14 and the α7 nAChR was further evidenced in the more physiological preparation of ex vivo rat brain, where T30 increased α7 nAChR mRNA, and finally in human brain post-mortem, where levels of T14 and α7 nAChR exhibited a strong correlation, reflecting the progression of neurodegeneration. Taken together these data would make it hard to account for T14 binding to any other receptor, and thus interception at this binding site would make a very attractive and remarkably specific therapeutic strategy.

5.
Biomed Pharmacother ; 158: 114120, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521245

RESUMO

A 14mer peptide, T14, is a possible signaling molecule driving neurodegeneration. Its levels are doubled in the Alzheimer brain, but its effects can be blocked at the target alpha-7 receptor by a cyclised variant, 'NBP14', which has beneficial effects, in a transgenic mouse model, on the behavioral and histochemical profile. Since the antagonism of T14 has evident therapeutic potential, we explore here an alternative method of preventing its action by comparing the efficacy of NBP14 with a proprietorial polyclonal antibody against T14, 'Ab-19', at inhibiting three distinct effects of the peptide in PC12 cells: calcium influx, cell viability and compensatory acetylcholinesterase (AChE) release. None of these three parameters was affected by either blocking agent when applied alone. However, both NBP14 and the Ab-19 exhibited a dose-dependent profile against the actions of T14 in all three scenarios: the least sensitive effect observed was in the lower dose range, for both the antibody and the receptor blocker, in antagonizing T14-triggered release of AChE: this parameter is interpreted as indirect compensation for the T14-induced compromise of cell viability, triggered by the enhanced influx of calcium through the initial binding of the peptide to an allosteric site on the alpha-7 receptor. As such, it is the most delayed and indirect index of T14 action and thus the least relatively impacted by lowest doses of either NBP14 or Ab-19. In all three scenarios however the effects of T14 are successfully offset by either agent and thus offer two potentially very different therapies against Alzheimer's disease.


Assuntos
Doença de Alzheimer , Ratos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Cálcio/metabolismo , Peptídeos/metabolismo , Anticorpos/uso terapêutico
6.
Biomed Pharmacother ; 167: 115498, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713989

RESUMO

T14, a 14mer peptide derived from the C-terminus of acetylcholinesterase (AChE) is a signalling molecule that could drive neurodegeneration via the alpha 7 nicotinic acetylcholine receptor. Its levels increase as Alzheimer's pathology progresses; however, a cyclic variant of the compound, NBP14, can block the effects of the endogenous linear counterpart in-vitro, ex vivo, and in vivo. Here, we explore the antagonistic potential of two 6mer peptides, NBP6A and NBP6B. These are smaller linear versions of NBP14, designed to be more effective by modifying the amino acid residues to enhance receptor blockade alongside other relevant solubility parameters. The peptides were tested in-vitro in PC12 cells on three parameters, calcium influx, cell viability, and AChE release, and ex vivo using voltage sensitive dye imaging (VSDI) in rat brain slices. Neither NBP6A nor NBP6B applied alone had any effect. In PC12 cells, NBP6B was identified as the more potent molecule since it demonstrated more effective blockade of T14 action on calcium influx, cell viability, and AChE release. NBP6B was then further evaluated using VSDI, where it proved twice as potent as NBP14 in blocking the action of T14. The improved effect of NBP6B in blocking the actions of T14, combined with its smaller size suggests that this variant could have even greater therapeutic potential than its original cyclic compound, for treating neurodegenerative disorders.

7.
Int J Biochem Cell Biol ; 149: 106260, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781081

RESUMO

Here we review the idea that Alzheimer's disease (AD) results from aberrant activation of a normal developmental mechanism. This process operates in primarily vulnerable, subcortical nuclei with a distinguishing embryological provenance: the basal rather than the alar plate. All cells are dependent for growth on calcium influx yet these neurons retain a sensitivity to trophic factors into maturity. However, as the brain matures this action becomes detrimental such that the trophic process could turn toxic if triggered in adult brain, in retaliation to an initial insult. The signalling molecule driving this trophic-toxic mechanism is a 14mer peptide (T14) that acts on the alpha-7 receptor to enhance calcium entry, inducing excitotoxicity and proliferation of the receptor, perpetuating a feedforward cycle of neurodegeneration including production of beta-amyloid and p-tau. The T14 system has been previously unrecognised as a basic biological process, yet its pharmaceutical manipulation could have valuable clinical applications.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/toxicidade , Cálcio , Humanos , Neurônios , Fragmentos de Peptídeos/química
8.
Alzheimers Dement (N Y) ; 8(1): e12274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35415206

RESUMO

Introduction: The neuronal mechanism driving Alzheimer's disease (AD) is incompletely understood. Methods: Immunohistochemistry, pharmacology, biochemistry, and behavioral testing are employed in two pathological contexts-AD and a transgenic mouse model-to investigate T14, a 14mer peptide, as a key signaling molecule in the neuropathology. Results: T14 increases in AD brains as the disease progresses and is conspicuous in 5XFAD mice, where its immunoreactivity corresponds to that seen in AD: neurons immunoreactive for T14 in proximity to T14-immunoreactive plaques. NBP14 is a cyclized version of T14, which dose-dependently displaces binding of its linear counterpart to alpha-7 nicotinic receptors in AD brains. In 5XFAD mice, intranasal NBP14 for 14 weeks decreases brain amyloid and restores novel object recognition to that in wild-types. Discussion: These findings indicate that the T14 system, for which the signaling pathway is described here, contributes to the neuropathological process and that NBP14 warrants consideration for its therapeutic potential.

9.
Toxicol Appl Pharmacol ; 244(3): 344-53, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20132834

RESUMO

Previous work by our group demonstrated that homomeric alpha7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca(2+) increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific alpha7 agonist PNU 282987 with IC(50) values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human alpha7 but not with alpha4beta2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and alpha-bungarotoxin but not by dihydro-beta-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on alpha7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca(2+) release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca(2+) levels and induced an increase in alpha-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and alpha7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca(2+)-dependent enzymes such as protein kinase C and nitric oxide synthase, which are involved in the generation of ROS and the blockade of the dopamine transporter. This, together with caspase 3 activation, must play a role in MDMA-induced cytotoxicity.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Caspase 3/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Receptores Nicotínicos/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Ativação Enzimática , Humanos , Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Células PC12 , Ratos , Receptores Nicotínicos/metabolismo , Espectrina/metabolismo , Regulação para Cima/efeitos dos fármacos , Xenopus/metabolismo
10.
Oncotarget ; 8(7): 11414-11424, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28077796

RESUMO

A 14mer peptide (T14) derived from the C-terminus of acetylcholinesterase (AChE) selectively activates metastatic breast cancer cells via the alpha-7 nicotinic receptor (α7 nAChR). This naturally occurring peptide is also present in brain, is elevated in Alzheimer's disease, and is antagonised by a cyclized variant (NBP-14). Here we investigated the effects of NBP-14 in six different cancer cell lines, primary leukemia B-cells and normal B-cells. All cells tested expressed α7 nAChR, intracellular and extracellular T14. However, NBP-14 showed low toxicity and weak anti-proliferative effects in the majority of the cell lines and was even less toxic in normal B-cells when compared to primary chronic lymphocytic leukemia cells (P < 0.001). Given the potential role of T14 peptide in metastasis, we next investigated the effects of NBP-14 on tumor cell migration, where it caused a dose-dependent reduction. The extent of NBP-14 inhibition positively correlated with the migration of the cells (r2 = 0.45; P = 0.06). Furthermore, NBP-14 preferentially inhibited the migration of primary leukemia cells when compared with normal B-cells (P = 0.0002); when the normal B-cell data was excluded, this correlation was strengthened (r2 = 0.80; P = 0.006). Importantly, the constitutive α7 nAChR expression positively correlated with intracellular T14 levels (r2 = 0.91; P = 0.0003) and inversely correlated with extracellular T14 levels in the cell culture supernatants (r2 = -0.79; P = 0.034). However, in the presence of NBP-14, α7 nAChR expression was reduced (P = 0.04) and the most migratory cells showed the largest reduction in expression. In conclusion, NBP-14-mediated antagonism of the α7 nAChR offers a novel therapeutic strategy with the potential to inhibit tumor cell migration.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Movimento Celular/efeitos dos fármacos , Invasividade Neoplásica , Peptídeos Cíclicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos
11.
Neuropharmacology ; 105: 487-499, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26867503

RESUMO

The primary cause of Alzheimer's disease is unlikely to be the much studied markers amyloid beta or tau. Their widespread distribution throughout the brain does not account for the specific identity and deep subcortical location of the primarily vulnerable neurons. Moreover an unusual and intriguing feature of these neurons is that, despite their diverse transmitters, they all contain acetylcholinesterase. Here we show for the first time that (1) a peptide derived from acetylcholinesterase, with independent trophic functions that turn toxic in maturity, is significantly raised in the Alzheimer midbrain and cerebrospinal fluid; (2) a synthetic version of this peptide enhances calcium influx and eventual production of amyloid beta and tau phosphorylation via an allosteric site on the α7 nicotinic receptor; (3) a synthetic cyclic version of this peptide is neuroprotective against the toxicity not only of its linear counterpart but also of amyloid beta, thereby opening up the prospect of a novel therapeutic approach.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolinesterase/metabolismo , Sítio Alostérico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/farmacologia , Animais , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Galantamina/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Fármacos Neuroprotetores/farmacologia , Células PC12 , Fragmentos de Peptídeos/farmacologia , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Ratos , Técnicas de Cultura de Tecidos , Proteínas tau/metabolismo
12.
Eur J Med Chem ; 81: 35-46, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24942641

RESUMO

The α4ß2 nicotinic acetylcholine receptor (nAChR) is a molecular target of 3,4-methylenedioxymethamphetamine (MDMA), a synthetic drug also known as ecstasy, and it modulates the MDMA-mediated reinforcing properties. However, the enantioselective preference of the α4ß2 nAChR subtype still remains unknown. Since the two enantiomers exhibit different pharmacological profiles and stereoselective metabolism, the aim of this study is to assess a possible difference in the interaction of the MDMA enantiomers with this nAChR subtype. To this end, we report a novel simple, yet highly efficient enantioselective synthesis of the MDMA enantiomers, in which the key step is the diastereoselective reduction of imides derived from optically pure tert-butylsulfinamide. The enantioselective binding to the receptor is examined using [(3)H]epibatidine in a radioligand assay. Even though the two enantiomers induced a concentration-dependent binding displacement, (S)-MDMA has an inhibition constant 13-fold higher than (R)-MDMA, which shows a Hill's coefficient not significantly different from unity, implying a competitive interaction. Furthermore, when NGF-differentiated PC12 cells were pretreated with the compounds, a significant increase in binding of [(3)H]epibatidine was found for (R)-MDMA, indicating up-regulation of heteromeric nAChR in the cell surface. Finally, docking and molecular dynamics studies have been used to identify the binding mode of the two enantiomers, which provides a structural basis to justify the differences in affinity from the differential interactions played by the substituents at the stereogenic centre of MDMA. The results provide a basis to explore the distinct psychostimulant profiles of the MDMA enantiomers mediated by the α4ß2 nAChR subtype.


Assuntos
3,4-Metilenodioxianfetamina/análogos & derivados , Receptores Nicotínicos/metabolismo , 3,4-Metilenodioxianfetamina/síntese química , 3,4-Metilenodioxianfetamina/química , 3,4-Metilenodioxianfetamina/metabolismo , 3,4-Metilenodioxianfetamina/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estrutura Molecular , Células PC12 , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
13.
PLoS One ; 8(2): e54864, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23390503

RESUMO

BACKGROUND: ß-amyloid is regarded as a significant factor in Alzheimer's disease: but inefficient therapies based on this rationale suggests that additional signalling molecules or intermediary mechanisms must be involved in the actual initiation of the characteristic degeneration of neurons. One clue could be that acetylcholinesterase, also present in amyloid plaques, is aberrant in peripheral tissues such as blood and adrenal medulla that can be implicated in Alzheimer's disease. The aim of this study was to assess the bioactivity of a fragment of acetylcholinesterase responsible for its non-enzymatic functions, a thirty amino acid peptide ("T30") which has homologies with ß-amyloid. METHODS: Cell viability was measured by sulforhodamine B assay and also lactate dehydrogenase assay: meanwhile, changes in the status of living cells was monitored by measuring release of acetylcholinesterase in cell perfusates using the Ellman reagent. FINDINGS: T30 peptide and ß-amyloid each have toxic effects on PC12 cells, comparable to hydrogen peroxide(.) However only the two peptides selectively then evoke a subsequent, enhanced release in acetylcholinesterase that could only be derived from the extant cells. Moreover, unlike hydrogen peroxide, the T30 peptide selectively shifted a sub-threshold dose of ß-amyloid to a toxic effect, which also resulted in a comparable enhanced release of acetylcholinesterase. INTERPRETATION: This is the first study comparing directly the bioactivity of ß-amyloid with a peptide derived from acetylcholinesterase: the similarity in action suggests that the sequence homology between the two compounds might have a functional and/or pathological relevance. The subsequent enhanced release of acetylcholinesterase from the extant cells could reflect a primary 'compensatory' response of cells prone to degeneration, paradoxically providing further availability of the toxic C-terminal peptide to modulate the potency of ß-amyloid. Such a cycle of events may provide new insights into the mechanism of continuing selective cell loss in Alzheimer's disease and related degenerative disorders.


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Acetilcolinesterase/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , L-Lactato Desidrogenase/metabolismo , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Fragmentos de Peptídeos/química , Placa Amiloide/química , Ratos , Rodaminas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Neurotoxicology ; 35: 41-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23261423

RESUMO

Nicotine (NIC), the main psychostimulant compound of smoked tobacco, exerts its effects through activation of central nicotinic acetylcholine receptors (nAChR), which become up-regulated after chronic administration. Recent work has demonstrated that the recreational drug 3,4-methylenedioxy-methamphetamine (MDMA) has affinity for nAChR and also induces up-regulation of nAChR in PC 12 cells. Tobacco and MDMA are often consumed together. In the present work we studied the in vivo effect of a classic chronic dosing schedule of MDMA in rats, alone or combined with a chronic schedule of NIC, on the density of nAChR and on serotonin reuptake transporters. MDMA induced significant decreases in [(3)H]paroxetine binding in the cortex and hippocampus measured 24h after the last dose and these decreases were not modified by the association with NIC. In the prefrontal cortex, NIC and MDMA each induced significant increases in [(3)H]epibatidine binding (29.5 and 34.6%, respectively) with respect to saline-treated rats, and these increases were significantly potentiated (up to 72.1%) when the two drugs were associated. Also in this area, [(3)H]methyllycaconitine binding was increased a 42.1% with NIC+MDMA but not when they were given alone. In the hippocampus, MDMA potentiated the α7 regulatory effects of NIC (raising a 25.5% increase to 52.5%) but alone was devoid of effect. MDMA had no effect on heteromeric nAChR in striatum and a coronal section of the midbrain containing superior colliculi, geniculate nuclei, substantia nigra and ventral tegmental area. Specific immunoprecipitation of solubilised receptors suggests that the up-regulated heteromeric nAChRs contain α4 and ß2 subunits. Western blots with specific α4 and α7 antibodies showed no significant differences between the groups, indicating that, as reported for nicotine, up-regulation caused by MDMA is due to post-translational events rather than increased receptor synthesis.


Assuntos
Encéfalo/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Aconitina/análogos & derivados , Aconitina/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Esquema de Medicação , Sinergismo Farmacológico , Imunoprecipitação , Injeções Subcutâneas , Masculino , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Paroxetina/metabolismo , Piridinas/metabolismo , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Fatores de Tempo , Regulação para Cima
16.
Toxicol Appl Pharmacol ; 223(3): 195-205, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17614110

RESUMO

Previous work from our group indicated that alpha7 nicotinic acetylcholine receptors (alpha7 nAChR) potentially play a role in methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. The aims of the present study were two-fold: (1) to demonstrate the interaction of METH and MDMA with homomeric alpha7 nAChR ([(3)H]methyllycaconitine binding) and other heteromeric subtypes ([(3)H]epibatidine binding); and (2) to show the effects of amphetamine derivative pretreatment on the density of binding sites. METH and MDMA displaced [(3)H]methyllycaconitine and [(3)H]epibatidine binding in membranes from NGF-differentiated PC 12 cells and mouse brain, with K(i) values in the micromolar range, MDMA revealing a greater affinity than METH. In addition, METH and MDMA induced a time- and concentration-dependent increase in [(3)H]methyllycaconitine and [(3)H]epibatidine binding; which had already been apparent after 6 h of pretreatment, and which peaked in differentiated PC 12 cells after 48 h. The highest increases were found in [(3)H]epibatidine binding, with MDMA inducing higher increases than METH. Treatment with METH and MDMA increased B(max) of high-affinity sites for both radioligands without affecting K(d). The heightened binding was inhibited by pretreatment with cycloheximide, suggesting the participation of newly synthesised proteins while inhibition of protein trafficking to plasma membrane did not block up-regulation. The effects of protein kinase and cyclophilin inhibitors on such up-regulation were explored, revealing a rapid, differential and complex regulation, similar to that described for nicotinic ligands. All of these results demonstrate that METH and MDMA have affinity for, and can interact with, nAChR, inducing their up-regulation, specially when higher doses are used. Such effects may have a role in METH- and MDMA-induced neurotoxicity, cholinergic neurotransmission, and in processes related to addiction and dependence.


Assuntos
Encéfalo , Membrana Celular/efeitos dos fármacos , Metanfetamina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Receptores Nicotínicos/biossíntese , Animais , Ligação Competitiva , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Células PC12 , Ensaio Radioligante , Ratos , Fatores de Tempo , Regulação para Cima , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa