Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Cell ; 71(1): 6-7, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979969

RESUMO

In a recent Cell paper, Jiang et al. (2018) have shown that lnc-Lsm3b, a long non-coding RNA induced by type I IFN late in the infection in mouse macrophages, prevents further activation of RIG-I acting as a decoy for RIG-I.


Assuntos
Imunidade Inata , RNA Longo não Codificante , Animais , Comunicação Celular , Camundongos
2.
J Virol ; 96(10): e0187521, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35475668

RESUMO

Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous ß-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and ß-genus to inhibit the interferon-ß (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-ß expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.


Assuntos
Fator Regulador 3 de Interferon , Interferon beta , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Proteínas Repressoras , Papillomavirus Humano 16/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Mucosa/virologia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Pele/virologia
3.
J Immunol ; 207(10): 2589-2597, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34625522

RESUMO

Respiratory syncytial virus (RSV) infection in infancy is associated with increased risk of asthma, except in those with allergic disease at the time of infection. Using house dust mite allergen, we examined the effect of pre-existing atopy on postviral airway disease using Sendai virus in mice, which models RSV infection in humans. Sendai virus drives postviral airway disease in nonatopic mice; however, pre-existing atopy protected against the development of airway disease. This protection depended upon neutrophils, as depletion of neutrophils at the time of infection restored the susceptibility of atopic mice to postviral airway disease. Associated with development of atopy was an increase in polymorphonuclear neutrophil-dendritic cell hybrid cells that develop in Th2 conditions and demonstrated increased viral uptake. Systemic inhibition of IL-4 reversed atopic protection against postviral airway disease, suggesting that increased virus uptake by neutrophils was IL-4 dependent. Finally, human neutrophils from atopic donors were able to reduce RSV infection of human airway epithelial cells in vitro, suggesting these findings could apply to the human. Collectively our data support the idea that pre-existing atopy derives a protective neutrophil response via potential interaction with IL-4, preventing development of postviral airway disease.


Assuntos
Hipersensibilidade Imediata/imunologia , Neutrófilos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Respirovirus/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vírus Sinciciais Respiratórios/imunologia , Vírus Sendai/imunologia
4.
Mol Cell ; 58(1): 3-4, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25839430

RESUMO

In this issue, He et al. (2015) show how herpes virus usurps a cellular metabolic enzyme to induce RIG-I deamidation and RNA-independent activation, likely to better prevent further innate immune responses.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/imunologia , RNA Helicases DEAD-box/imunologia , Gammaherpesvirinae/imunologia , Evasão da Resposta Imune/genética , RNA Viral/imunologia , Proteínas Virais/imunologia , Animais , Proteína DEAD-box 58 , Humanos , Receptores Imunológicos
5.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33536170

RESUMO

N6-Methyladenosine (m6A) is the most abundant internal RNA modification catalyzed by host RNA methyltransferases. As obligate intracellular parasites, many viruses acquire m6A methylation in their RNAs. However, the biological functions of viral m6A methylation are poorly understood. Here, we found that viral m6A methylation serves as a molecular marker for host innate immunity to discriminate self from nonself RNA and that this novel biological function of viral m6A methylation is universally conserved in several families in nonsegmented negative-sense (NNS) RNA viruses. Using m6A methyltransferase (METTL3) knockout cells, we produced m6A-deficient virion RNAs from the representative members of the families Pneumoviridae, Paramyxoviridae, and Rhabdoviridae and found that these m6A-deficient viral RNAs triggered significantly higher levels of type I interferon compared to the m6A-sufficient viral RNAs, in a RIG-I-dependent manner. Reconstitution of the RIG-I pathway revealed that m6A-deficient virion RNA induced higher expression of RIG-I, bound to RIG-I more efficiently, enhanced RIG-I ubiquitination, and facilitated RIG-I conformational rearrangement and oligomerization. Furthermore, the m6A binding protein YTHDF2 is essential for suppression of the type I interferon signaling pathway, including by virion RNA. Collectively, our results suggest that several families in NNS RNA viruses acquire m6A in viral RNA as a common strategy to evade host innate immunity.IMPORTANCE The nonsegmented negative-sense (NNS) RNA viruses share many common replication and gene expression strategies. There are no vaccines or antiviral drugs for many of these viruses. We found that representative members of the families Pneumoviridae, Paramyxoviridae, and Rhabdoviridae among the NNS RNA viruses acquire m6A methylation in their genome and antigenome as a means to escape recognition by host innate immunity via a RIG-I-dependent signaling pathway. Viral RNA lacking m6A methylation induces a significantly higher type I interferon response than m6A-sufficient viral RNA. In addition to uncovering m6A methylation as a common mechanism for many NNS RNA viruses to evade host innate immunity, this study discovered a novel strategy to enhance type I interferon responses, which may have important applications in vaccine development, as robust innate immunity will likely promote the subsequent adaptive immunity.


Assuntos
Adenosina/análogos & derivados , Interações entre Hospedeiro e Microrganismos/imunologia , Interferon Tipo I/imunologia , Vírus de RNA de Sentido Negativo , Infecções por Vírus de RNA , RNA Viral/genética , Células A549 , Adenosina/genética , Regulação Viral da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Imunidade Inata , Metiltransferases/genética , Vírus de RNA de Sentido Negativo/genética , Vírus de RNA de Sentido Negativo/imunologia , Vírus de RNA de Sentido Negativo/patogenicidade , Processamento Pós-Transcricional do RNA , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia
6.
Eur J Immunol ; 50(12): 1959-1975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32644192

RESUMO

Plasmacytoid dendritic cells (DCs) are reported to induce robust type-I interferon (IFN) response, whereas cDC1 DCs develop moderate type-I IFN response upon TLR9 stimulation. It is very interesting to understand how this signaling under TLR9 is tightly regulated for the induction of type-I IFNs. Here, we report co-repressor protein NCoR1 as the major factor fine-tuning the signaling pathways regulating IFN-ß expression under TLR9 in cDC1 DCs. We found that NCoR1 knockdown induced a robust IFN-ß-mediated antiviral response upon TLR9 activation in cDC1 DCs. At the molecular level, we showed that NCoR1 directly repressed MyD88-IRF7 signaling axis in cDC1 cells. Therefore, NCoR1 depletion enhanced pIRF7 levels, IFN-ß secretion, and downstream pSTAT1-pSTAT2 signaling, leading to sustained induction of IFN stimulatory genes. Integrative genomic analysis depicted strong enrichment of an antiviral gene-module in CpG-activated NCoR1 knockdown DCs upon TLR9 activation. Moreover, we confirmed our findings in primary DCs derived from splenocytes of WT and NCoR1 DC-/- animals, which showed protection from Sendai and Vesicular Stomatitis viruses upon CpG activation. Ultimately, we identified that NCoR1-HDAC3 complex is involved in repressing the type-I IFN response in cDC1 DCs.


Assuntos
Células Dendríticas/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
7.
PLoS Pathog ; 14(4): e1006962, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29630666

RESUMO

Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world's most prevalent pathogens and could aid target selection for vaccine or antiviral development.


Assuntos
Ácidos/química , Proteínas do Capsídeo/metabolismo , Infecções por Enterovirus/virologia , Enterovirus/fisiologia , Intestinos/virologia , Neurônios/virologia , Sistema Respiratório/virologia , Proteínas do Capsídeo/genética , Enterovirus/classificação , Infecções por Enterovirus/genética , Infecções por Enterovirus/metabolismo , Humanos , Temperatura , Tropismo Viral
8.
Arch Virol ; 165(8): 1899-1903, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462284

RESUMO

Tacaribe virus (TCRV) is the prototype of the New World arenaviruses (also known as TCRV serocomplex viruses). While TCRV is not itself a human pathogen, many closely related members of this group cause hemorrhagic fever, and thus TCRV has long served as an important BSL2 system for research into diverse areas of arenavirus biology. Due to its widespread use, a coding-complete sequence for both the S and L segments of the bipartite genome has been publically available for almost 30 years. However, more recently, this sequence has been found to contain significant discrepancies compared to other samples of the same original strain (i.e., TRVL-11573). Further, it is incomplete with respect to the genome ends, which contain critical regulatory elements for RNA synthesis. In order to rectify these issues we now present the first complete genome sequence for this important prototype arenavirus. In addition to completing the S segment 5' end, we identified an apparent error in the L segment 3' end as well as substantial discrepancies in the S segment intergenic region likely to affect folding. Comparison of this sequence with existing partial sequences confirmed a 12-amino-acid deletion in GP, including putative glycosylation sites, and a 4-amino-acid exchange flanking the exonuclease domain of NP. Accounting for these corrections, the TRVL-11573 strain appears to be nearly identical to that isolated in Florida in 2012. The availability of this information provides a solid basis for future molecular and genetic work on this important prototype arenavirus.


Assuntos
Arenavirus do Novo Mundo/genética , Florida , Humanos , Elementos Reguladores de Transcrição/genética , Replicação Viral/genética , Sequenciamento Completo do Genoma/métodos
9.
Proc Natl Acad Sci U S A ; 114(31): 8342-8347, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716935

RESUMO

Viral respiratory infections are usually mild and self-limiting; still they exceptionally result in life-threatening infections in previously healthy children. To investigate a potential genetic cause, we recruited 120 previously healthy children requiring support in intensive care because of a severe illness caused by a respiratory virus. Using exome and transcriptome sequencing, we identified and characterized three rare loss-of-function variants in IFIH1, which encodes an RIG-I-like receptor involved in the sensing of viral RNA. Functional testing of the variants IFIH1 alleles demonstrated that the resulting proteins are unable to induce IFN-ß, are intrinsically less stable than wild-type IFIH1, and lack ATPase activity. In vitro assays showed that IFIH1 effectively restricts replication of human respiratory syncytial virus and rhinoviruses. We conclude that IFIH1 deficiency causes a primary immunodeficiency manifested in extreme susceptibility to common respiratory RNA viruses.


Assuntos
Predisposição Genética para Doença/genética , Síndromes de Imunodeficiência/genética , Helicase IFIH1 Induzida por Interferon/genética , Interferon beta/biossíntese , Vírus Sinciciais Respiratórios/imunologia , Infecções Respiratórias/virologia , Rhinovirus/imunologia , Adenosina Trifosfatases/genética , Pré-Escolar , Cuidados Críticos , Feminino , Variação Genética/genética , Humanos , Síndromes de Imunodeficiência/imunologia , Lactente , Recém-Nascido , Interferon beta/imunologia , Masculino , Estudos Prospectivos , Isoformas de Proteínas/genética , Infecções Respiratórias/imunologia , Replicação Viral/imunologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-28137809

RESUMO

Synthetic peptides derived from the heptad repeat (HR) of fusion (F) proteins can be used as dominant negative inhibitors to inhibit the fusion mechanism of class I viral F proteins. Here, we have performed a stapled-peptide scan across the HR2 domain of the respiratory syncytial virus (RSV) F protein with the aim to identify a minimal domain capable of disrupting the formation of the postfusion six-helix bundle required for viral cell entry. Constraining the peptides with a single staple was not sufficient to inhibit RSV infection. However, the insertion of double staples led to the identification of novel short stapled peptides that display nanomolar potency in HEp-2 cells and are exceptionally robust to proteolytic degradation. By replacing each amino acid of the peptides by an alanine, we found that the substitution of residues 506 to 509, located in a patch of polar contacts between HR2 and HR1, severely affected inhibition. Finally, we show that intranasal delivery of the most potent peptide to BALB/c mice significantly decreased RSV infection in upper and lower respiratory tracts. The discovery of this minimal HR2 sequence as a means for inhibition of RSV infection provides the basis for further medicinal chemistry efforts toward developing RSV fusion antivirals.


Assuntos
Antivirais/farmacologia , Peptídeos/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Proteínas Virais de Fusão/química , Internalização do Vírus/efeitos dos fármacos , Administração Intranasal , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antivirais/síntese química , Sítios de Ligação , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteólise , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/química , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Replicação Viral/efeitos dos fármacos
11.
J Gen Virol ; 98(6): 1282-1293, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28631605

RESUMO

Retinoic acid inducible gene (RIG-I)-mediated innate immunity plays a pivotal role in defence against virus infections. Previously we have shown that Sendai virus (SeV) defective interfering (DI) RNA functions as an exclusive and potent RIG-I ligand in DI-RNA-rich SeV-Cantell infected cells. To further understand how RIG-I is activated during SeV infection, we used a different interferon (IFN)-inducing SeV strain, recombinant SeVΔC, which, in contrast to SeV-Cantell is believed to stimulate IFN production due to the lack of the SeV IFN antagonist protein C. Surprisingly, we found that in SevΔC-infected cells, DI RNAs also functioned as an exclusive RIG-I ligand. Infections with wild-type SeV failed to generate any RIG-I-associated immunostimulatory RNA and this correlated with the lack of DI genomes in infected cells, as well as with the absence of cellular innate immune responses. Supplementation of the C protein in the context of SeVΔC infection led to a reduction in the number of DI RNAs, further supporting the potential role of the C protein as a negative regulator of DI generation and/or accumulation. Our findings indicate that limiting DI genome production is an important function of viral IFN antagonist proteins.


Assuntos
Proteína DEAD-box 58/metabolismo , Deleção de Genes , Regulação Viral da Expressão Gênica , RNA Interferente Pequeno/metabolismo , Vírus Sendai/imunologia , Proteínas Virais/genética , Adjuvantes Imunológicos/metabolismo , Teste de Complementação Genética , Células HeLa , Humanos , RNA Viral/metabolismo , Receptores Imunológicos , Vírus Sendai/genética
12.
J Virol ; 90(1): 586-90, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26446607

RESUMO

Influenza virus RNA (vRNA) promoter panhandle structures are believed to be sensed by retinoic acid-inducible gene I (RIG-I). The occurrence of mismatches in this double-stranded RNA structure raises questions about their effect on innate sensing. Our results suggest that mismatches in vRNA promoters decrease binding to RIG-I in vivo, affecting RNA/RIG-I complex formation and preventing RIG-I activation. These results can be inferred to apply to other viruses and suggest that mismatches may represent a general viral strategy to escape RIG-I sensing.


Assuntos
Pareamento Incorreto de Bases , RNA Helicases DEAD-box/metabolismo , Vírus da Influenza A/imunologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Proteína DEAD-box 58 , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Conformação de Ácido Nucleico , Ligação Proteica , RNA de Cadeia Dupla/química , RNA Viral/química , Receptores Imunológicos
13.
RNA Biol ; 14(10): 1431-1443, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28277929

RESUMO

RNA decay and RNA maturation are important steps in the regulation of bacterial gene expression. RNase J, which is present in about half of bacterial species, has been shown to possess both endo- and 5' to 3' exo-ribonuclease activities. The exonucleolytic activity is clearly involved in the degradation of mRNA and in the maturation of at least the 5' end of 16S rRNA in the 2 Firmicutes Staphylococcus aureus and Bacillus subtilis. The endoribonuclease activity of RNase J from several species has been shown to be weak in vitro and 3-D structural data of different RNase J orthologs have not provided a clear explanation for the molecular basis of this activity. Here, we show that S. aureus RNase J1 is a manganese dependent homodimeric enzyme with strong 5' to 3' exo-ribonuclease as well as endo-ribonuclease activity. In addition, we demonstrated that SauJ1 can efficiently degrade 5' triphosphorylated RNA. Our results highlight RNase J1 as an important player in RNA turnover in S. aureus.


Assuntos
Manganês/metabolismo , Ribonucleases/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Fosforilação , Estrutura Quaternária de Proteína , Ribonucleases/química , Ribonucleases/genética , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
14.
J Immunol ; 195(3): 1025-33, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101320

RESUMO

Because of their unique capacity to cross-present Ags to CD8(+) T cells, mouse lymphoid tissue-resident CD8(+) dendritic cells (DCs) and their migratory counterparts are critical for priming antiviral T cell responses. High expression of the dsRNA sensor TLR3 is a distinctive feature of these cross-presenting DC subsets. TLR3 engagement in CD8(+) DCs promotes cross-presentation and the acquisition of effector functions required for driving antiviral T cell responses. In this study, we performed a comprehensive analysis of the TLR3-induced antiviral program and cell-autonomous immunity in CD8(+) DC lines and primary CD8(+) DCs. We found that TLR3-ligand polyinosinic-polycytidylic acid and human rhinovirus infection induced a potent antiviral protection against Sendai and vesicular stomatitis virus in a TLR3 and type I IFN receptor-dependent manner. Polyinosinic-polycytidylic acid-induced antiviral genes were identified by mass spectrometry-based proteomics and transcriptomics in the CD8(+) DC line. Nanostring nCounter experiments confirmed that these antiviral genes were induced by TLR3 engagement in primary CD8(+) DCs, and indicated that many are secondary TLR3-response genes requiring autocrine IFN-ß stimulation. TLR3-activation thus establishes a type I IFN-dependent antiviral program in a DC subtype playing crucial roles in priming adaptive antiviral immune responses. This mechanism is likely to shield the priming of antiviral responses against inhibition or abrogation by the viral infection. It could be particularly relevant for viruses detected mainly by TLR3, which may not trigger type I IFN production by DCs that lack TLR3, such as plasmacytoid DCs or CD8(-) DCs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Interferon beta/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Apresentação Cruzada/imunologia , Humanos , Interferon beta/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Poli I-C/imunologia , Receptor de Interferon alfa e beta/imunologia , Rhinovirus/imunologia , Vírus Sendai/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia
15.
BMC Biol ; 14: 69, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538435

RESUMO

BACKGROUND: After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1 activation remain unclear. RESULTS: We report here the localization of the ubiquitinated and phosphorylated active form of TBK1 to the Golgi apparatus after the stimulation of RIG-I-like receptors (RLRs) or Toll-like receptor-3 (TLR3), due to TBK1 K63-linked ubiquitination on lysine residues 30 and 401. The ubiquitin-binding protein optineurin (OPTN) recruits ubiquitinated TBK1 to the Golgi apparatus, leading to the formation of complexes in which TBK1 is activated by trans-autophosphorylation. Indeed, OPTN deficiency in various cell lines and primary cells impairs TBK1 targeting to the Golgi apparatus and its activation following RLR or TLR3 stimulation. Interestingly, the Bluetongue virus NS3 protein binds OPTN at the Golgi apparatus, neutralizing its activity and thereby decreasing TBK1 activation and downstream signaling. CONCLUSIONS: Our results highlight an unexpected role of the Golgi apparatus in innate immunity as a key subcellular gateway for TBK1 activation after RNA virus infection.


Assuntos
Complexo de Golgi/virologia , Imunidade Inata , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Vírus de RNA/imunologia , Proteínas de Ciclo Celular , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana Transportadoras , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Vírus de RNA , Receptores Imunológicos , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Transfecção , Ubiquitinação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
16.
BMC Biol ; 10: 44, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22626058

RESUMO

BACKGROUND: During a viral infection, the intracellular RIG-I-like receptors (RLRs) sense viral RNA and signal through the mitochondrial antiviral signaling adaptor MAVS (also known as IPS-1, Cardif and VISA) whose activation triggers a rapid production of type I interferons (IFN) and of pro-inflammatory cytokines through the transcription factors IRF3/IRF7 and NF-κB, respectively. While MAVS is essential for this signaling and known to operate through the scaffold protein NEMO and the protein kinase TBK1 that phosphorylates IRF3, its mechanism of action and regulation remain unclear. RESULTS: We report here that RLR activation triggers MAVS ubiquitination on lysine 7 and 10 by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. Inhibition of this MAVS degradation with a proteasome inhibitor does not affect NF-κB signaling but it hampers IRF3 activation, and NEMO and TBK1, two essential mediators in type I IFN production, are retained at the mitochondria. CONCLUSIONS: These results suggest that MAVS functions as a recruitment platform that assembles a signaling complex involving NEMO and TBK1, and that the proteasome-mediated MAVS degradation is required to release the signaling complex into the cytosol, allowing IRF3 phosphorylation by TBK1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/imunologia , Interferon Tipo I/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Infecções por Respirovirus/imunologia , Vírus Sendai/imunologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/metabolismo , NF-kappa B/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Respirovirus/metabolismo , Vírus Sendai/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido , Ubiquitinação
17.
J Biol Chem ; 286(8): 6108-16, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21159780

RESUMO

Arenavirus RNA genomes are initiated by a "prime and realign" mechanism, such that the initiating GTP is found as a single unpaired (overhanging) nucleotide when the complementary genome ends anneal to form double-stranded (ds) RNA panhandle structures. dsRNAs modeled on these structures do not induce interferon (IFN), as opposed to blunt-ended (5' ppp)dsRNA. This study examines whether these viral structures can also act as decoys, by trapping RIG-I in inactive dsRNA complexes. We examined the ability of various dsRNAs to activate the RIG-I ATPase (presumably a measure of helicase translocation on dsRNA) relative to their ability to induce IFN. We found that there is no simple relationship between these two properties, as if RIG-I can translocate on short dsRNAs without inducing IFN. Moreover, we found that (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide can in fact competitively inhibit the ability of blunt-ended (5' ppp)dsRNAs to induce IFN when co-transfected into cells and that this inhibition is strongly dependent on the presence of the 5' ppp. In contrast, (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide does not inhibit poly(I-C)-induced IFN activation, which is independent of the presence of a 5' ppp group.


Assuntos
Arenavirus/metabolismo , RNA Helicases DEAD-box/metabolismo , Genoma Viral/fisiologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Arenavirus/genética , Linhagem Celular , Proteína DEAD-box 58 , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Humanos , Indutores de Interferon/farmacologia , Interferons/biossíntese , Interferons/genética , Poli I-C/farmacologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Receptores Imunológicos
18.
J Virol ; 85(6): 2771-80, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21228237

RESUMO

Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.


Assuntos
Furina/metabolismo , Vírus Sinciciais Respiratórios/fisiologia , Vírus Sendai/fisiologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Fusão Celular , Estabilidade Proteica , Vírus Sinciciais Respiratórios/genética , Vírus Sendai/genética , Temperatura , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
19.
J Virol ; 85(2): 725-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21068245

RESUMO

The large RNA polymerase (L) protein of human parainfluenza virus type 2 (hPIV2) binds the nucleocapsid, phosphoprotein, and V protein, as well as itself, and these interactions are essential for transcription and replication of the viral RNA genome. Although all of these interactions were found to be mediated through the domains within the N terminus of L, the C terminus of the L protein was also required for minigenome reporter gene expression. We have identified a highly conserved rubulavirus domain near the C terminus of the L protein that is required for mRNA synthesis but not for genome replication. Remarkably, this region of L shares homology with a conserved region of cellular capping enzymes that binds GTP and forms a lysyl-GMP enzyme intermediate, the first step in the cellular capping reaction. We propose that this conserved region of L also binds GTP (or GDP) to carry out the second step of the unconventional nonsegmented negative-strand virus capping reaction.


Assuntos
Vírus da Parainfluenza 2 Humana/fisiologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Replicação Viral , Linhagem Celular , Humanos , Vírus da Parainfluenza 2 Humana/genética , Ligação Proteica , Capuzes de RNA/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
20.
EMBO Rep ; 11(2): 133-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20019757

RESUMO

The intracellular retinoic acid-inducible gene I-like receptors (RLRs) sense viral ribonucleic acid and signal through the mitochondrial protein mitochondrial antiviral signalling (MAVS) to trigger the production of type I interferons and proinflammatory cytokines. In this study, we report that RLR activation promotes elongation of the mitochondrial network. Mimicking this elongation enhances signalling downstream from MAVS and favours the binding of MAVS to stimulator of interferon genes, an endoplasmic reticulum (ER) protein involved in the RLR pathway. By contrast, enforced mitochondrial fragmentation dampens signalling and reduces the association between both proteins. Our finding that MAVS is associated with a pool of mitofusin 1, a protein of the mitochondrial fusion machinery, suggests that MAVS is capable of regulating mitochondrial dynamics to facilitate the mitochondria-ER association required for signal transduction. Importantly, we observed that viral mitochondria-localized inhibitor of apoptosis, a cytomegalovirus (CMV) antiapoptotic protein that promotes mitochondrial fragmentation, inhibits signalling downstream from MAVS, suggesting a possible new immune modulation strategy of the CMV.


Assuntos
Antivirais/metabolismo , Imunidade Inata/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Receptores do Ácido Retinoico/fisiologia , Células Cultivadas , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/imunologia , Proteínas Mitocondriais/metabolismo , Forma das Organelas/imunologia , Tamanho das Organelas/imunologia , Ligação Proteica , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/imunologia , Viroses/imunologia , Viroses/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa