Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Hazards (Dordr) ; 112(2): 1247-1271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611317

RESUMO

Disastrous floods in the twin cities of Nogales, Arizona, USA, and Nogales, Sonora, Mexico (collectively referred to as Ambos Nogales) occur annually in response to monsoonal summer rains. Flood-related hazards include property damage, impairment to sewage systems, sewage discharge, water contamination, erosion, and loss of life. Flood risk, particularly in Nogales, Sonora, is amplified by informal, "squatter" settlements in the watershed floodplain and associated development and infrastructure. The expected increase in precipitation intensity, resulting from climate change, poses further risk to flooding therein. We explore binational community perceptions of flooding, preferences for watershed management, and potential actions to address flooding and increase socio-ecological resilience in Ambos Nogales using standardized questionnaires and interviews to collect data about people and their preferences. We conducted 25 semi-structured interviews with local subject matter experts and gathered survey responses from community members in Ambos Nogales. Though survey response was limited, expected frequencies were high enough to conduct Chi-squared tests of independence to test for statistically significant relationships between survey variables. Results showed that respondents with previous experience with flooding corresponded with their level of concern about future floods. Additionally, respondents perceived greater flood-related risks from traveling across town and damage to vehicles than from inundation or damages to their homes or neighborhoods. Binationally, women respondents felt less prepared for future floods than men. On both sides of the border, community members and local experts agreed that Ambos Nogales lacks adequate preparation for future floods. To increase preparedness, they recommended flood risk education and awareness campaigns, implementation of green infrastructure, additional stormwater infrastructure (such as drainage systems), enhanced flood early warning systems, and reduction of flood flows through regulations to reduce the expansion of hard surfaces. This study contributes systematic collection of information about flood risk perceptions across an international border, including novel data regarding risks related to climate change and gender-based assessments of flood risk. Our finding of commonalities across both border communities, in perceptions of flood risk and in the types of risk reduction solutions recommended by community members, provides clear directions for flood risk education, outreach, and preparedness, as well as measures to enhance cross-border cooperation.

2.
Sci Total Environ ; 751: 141481, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32889453

RESUMO

Drought is the most serious natural disaster causing severe damage to agriculture. Drought impacts on rice (Oryza sativa) production present a major threat to future global food security. In this paper, the Environmental Policy Integrated Climate (EPIC) model was used to simulate the growth of rice, in different periods (short-term (2019-2039), medium-term (2040-2069), long-term (2070-2099)), based on multiple Representative Concentration Pathways (RCP) scenarios. Drought intensity and rice physical vulnerability curves were assessed, based on the output parameters of EPIC, to evaluate global rice yield risk, due to drought. The results show that the average expected loss rate of global rice yield may reach 13.1% (±0.4%) in the future. The high-risk area of rice drought is mainly located in the north of 30°N. The fluctuation of rice drought risk and the proportion of increased risk areas will increase significantly. About 77.6% of the changes in rice drought risk are explained by variations in shortwave radiation (r = 0.88). Projections show that the average value of daily shortwave radiation increases by 1 W/m2 during the rice growth period, accompanied by an expected rice yield loss rate of about 12.7%. The rice drought risk methods presented in this paper provide plausible estimates of forecasting future drought risk under climate change, and address challenges of sparse data; we believe these methods can be applied to decisions for reducing drought-related crop losses and ensuring global food security.


Assuntos
Secas , Oryza , Agricultura , Mudança Climática , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa