Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
PLoS Pathog ; 16(4): e1008474, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315358

RESUMO

Trypanosoma cruzi (T. cruzi) is the etiological agent of Chagas cardiomyopathy. In the present study, we investigated the role of extracellular vesicles (Ev) in shaping the macrophage (Mφ) response in progressive Chagas disease (CD). We purified T. cruzi Ev (TcEv) from axenic parasite cultures, and T. cruzi-induced Ev (TEv) from the supernatants of infected cells and plasma of acutely and chronically infected wild-type and Parp1-/- mice. Cultured (Raw 264.7) and bone-marrow Mφ responded to TcEV and TEv with a profound increase in the expression and release of TNF-α, IL-6, and IL-1ß cytokines. TEv produced by both immune (Mφ) and non-immune (muscle) cells were proinflammatory. Chemical inhibition or genetic deletion of PARP1 (a DNA repair enzyme) significantly depressed the TEv-induced transcriptional and translational activation of proinflammatory Mφ response. Oxidized DNA encapsulated by TEv was necessary for PARP1-dependent proinflammatory Mφ response. Inhibition studies suggested that DNA-sensing innate immune receptors (cGAS>>TLR9) synergized with PARP1 in signaling the NFκB activation, and inhibition of PARP1 and cGAS resulted in >80% inhibition of TEv-induced NFκB activity. Histochemical studies showed intense inflammatory infiltrate associated with profound increase in CD11b+CD68+TNF-α+ Mφ in the myocardium of CD wild-type mice. In comparison, chronically infected Parp1-/- mice exhibited low-to-moderate tissue inflammation, >80% decline in myocardial infiltration of TNF-α+ Mφ, and no change in immunoregulatory IL-10+ Mφ. We conclude that oxidized DNA released with TEv signal the PARP1-cGAS-NF-κB pathway of proinflammatory Mφ activation and worsens the chronic inflammatory pathology in CD. Small molecule antagonists of PARP1-cGAS signaling pathway would potentially be useful in reprogramming the Mφ activation and controlling the chronic inflammation in CD.


Assuntos
Doença de Chagas/metabolismo , Vesículas Extracelulares/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/imunologia , Nucleotidiltransferases/imunologia , Poli(ADP-Ribose) Polimerase-1/imunologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Microb Pathog ; 155: 104884, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33864876

RESUMO

Dogs are a reservoir for Chagas disease, caused by Trypanosoma cruzi (T. cruzi), and other companion vector-borne diseases, including ehrlichiosis (Ehrlichia canis and Ehrlichia ewingii), anaplasmosis (Anaplasma phagocytophilum and Anaplasma platys), dirofilariasis (Dirofilaria immitis) and Lyme disease (Borrelia burgdorferi). This study has two key objectives: 1) to determine seroreactivity against T. cruzi in dogs from the town of Colón, in Portoviejo city, in the central coast of Ecuador; and 2) to establish the coinfection frequency of other companion vector-borne diseases in dogs positive for T. cruzi. Antibodies against T. cruzi were detected using two enzyme-linked immunosorbent assays. Diagnostic consensus between ELISA tests was established using the Cohen's Kappa coefficient. Other haemoparasitic diseases were detected using the IDEXX SNAP® 4Dx® kit in dogs previously diagnosed as T. cruzi-seropositive. From 84 dogs sampled, 57.14% (48/84) tested positive for T. cruzi. Co-infection analysis of 25 dogs positive for T. cruzi revealed antibodies also against Ehrlichia spp. (48%), Anaplasma spp. (28%), and Dirofilaria immitis (12%). These results provide a novel perspective regarding the status of these pathogens which co-infect dogs in Colón. Since all these pathogens are zoonotic, our findings should warn regional health authorities to implement sanitary programs, to better prevent and control vectors associated to these pathogens. On the other hand, human and veterinarian doctors, should consider that patients with a cardiac infection condition could be suffering co-infections with two or more vector transmitted pathogens.


Assuntos
Anaplasmose , Borrelia burgdorferi , Doença de Chagas , Coinfecção , Doenças do Cão , Ehrlichiose , Doença de Lyme , Trypanosoma cruzi , Doenças Transmitidas por Vetores , Anaplasma , Anaplasmose/epidemiologia , Animais , Anticorpos Antibacterianos , Doença de Chagas/epidemiologia , Doença de Chagas/veterinária , Coinfecção/epidemiologia , Coinfecção/veterinária , Doenças do Cão/epidemiologia , Cães , Equador/epidemiologia , Ehrlichiose/epidemiologia , Ehrlichiose/veterinária , Humanos , Estudos Soroepidemiológicos
3.
PLoS Pathog ; 14(5): e1007065, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29851986

RESUMO

Chagasic cardiomyopathy is caused by Trypanosoma cruzi infection. Poly(ADP-ribose) polymerase 1 (PARP1) is known for its function in nuclear DNA repair. In this study, we have employed genetic deletion and chemical inhibition approaches to determine the role of PARP1 in maintaining mtDNA dependent mitochondrial function in Chagas disease. Our data show that expression of PARP1 and protein PARylation were increased by >2-fold and >16-fold, respectively, in the cytosolic, nuclear, and mitochondrial fractions of the human cardiac myocytes and the myocardium of wildtype (WT) mice chronically infected with T. cruzi. The nuclear and cytosolic PARP1/PAR did not interfere with the transcription and translation of the components of the mtDNA replisome machinery in infected cardiomyocytes and chagasic murine myocardium. However, PARP1 binding to Polymerase γ and mtDNA in mitochondria were increased, and associated with a loss in mtDNA content, mtDNA-encoded gene expression, and oxidative phosphorylation (OXPHOS) capacity, and an increase in mitochondrial ROS production in cells and heart of WT mice infected with T. cruzi. Subsequently, an increase in oxidative stress, and cardiac collagen deposition, and a decline in LV function was noted in chagasic mice. Genetic deletion of PARP1 or treatment with selective inhibitor of PARP1 (PJ34) improved the mtDNA content, mitochondrial function, and oxidant/antioxidant balance in human cardiomyocytes and chronically infected mice. Further, PARP1 inhibition was beneficial in preserving the cardiac structure and left ventricular function in chagasic mice. We conclude that PARP1 overexpression is associated with a decline in Pol γ-dependent maintenance of mtDNA content, mtDNA-encoded gene expression, and mitochondrial respiratory function, and subsequently contributes to an increase in mtROS and oxidative stress in chagasic myocardium. Inhibition of mitochondrial PARP1/PAR offers a novel therapy in preserving the mitochondrial and LV function in chronic Chagas disease.


Assuntos
Cardiomiopatia Chagásica/fisiopatologia , DNA Polimerase gama/genética , DNA Mitocondrial/fisiologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Antioxidantes/metabolismo , Células Cultivadas , Cardiomiopatia Chagásica/genética , Imunoprecipitação da Cromatina , DNA de Protozoário/fisiologia , Células HeLa , Coração/fisiologia , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Células Musculares/metabolismo , Miócitos Cardíacos/citologia , Estresse Oxidativo , Fenantrenos/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/genética , Função Ventricular Esquerda/fisiologia
4.
PLoS Pathog ; 12(10): e1005954, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27764247

RESUMO

Chronic chagasic cardiomyopathy (CCM) is presented by increased oxidative/inflammatory stress and decreased mitochondrial bioenergetics. SIRT1 senses the redox changes and integrates mitochondrial metabolism and inflammation; and SIRT1 deficiency may be a major determinant in CCM. To test this, C57BL/6 mice were infected with Trypanosoma cruzi (Tc), treated with SIRT1 agonists (resveratrol or SRT1720), and monitored during chronic phase (~150 days post-infection). Resveratrol treatment was partially beneficial in controlling the pathologic processes in Chagas disease. The 3-weeks SRT1720 therapy provided significant benefits in restoring the left ventricular (LV) function (stroke volume, cardiac output, ejection fraction etc.) in chagasic mice, though cardiac hypertrophy presented by increased thickness of the interventricular septum and LV posterior wall, increased LV mass, and disproportionate synthesis of collagens was not controlled. SRT1720 treatment preserved the myocardial SIRT1 activity and PGC1α deacetylation (active-form) that were decreased by 53% and 9-fold respectively, in chagasic mice. Yet, SIRT1/PGC1α-dependent mitochondrial biogenesis (i.e., mitochondrial DNA content, and expression of subunits of the respiratory complexes and mtDNA replication machinery) was not improved in chronically-infected/SRT1720-treated mice. Instead, SRT1720 therapy resulted in 2-10-fold inhibition of Tc-induced oxidative (H2O2 and advanced oxidation protein products), nitrosative (inducible nitric oxide synthase, 4-hydroxynonenal, 3-nitrotyrosine), and inflammatory (IFNγ, IL1ß, IL6 and TNFα) stress and inflammatory infiltrate in chagasic myocardium. These benefits were delivered through SIRT1-dependent inhibition of NFκB transcriptional activity. We conclude that Tc inhibition of SIRT1/PGC1α activity was not a key mechanism in mitochondrial biogenesis defects during Chagas disease. SRT1720-dependent SIRT1 activation led to suppression of NFκB transcriptional activity, and subsequently, oxidative/nitrosative and inflammatory pathology were subdued, and antioxidant status and LV function were enhanced in chronic chagasic cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Animais , Antioxidantes/farmacologia , Western Blotting , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Resveratrol , Transdução de Sinais/fisiologia , Sirtuína 1/efeitos dos fármacos , Transcriptoma , Trypanosoma cruzi
5.
PLoS Pathog ; 10(12): e1004516, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474113

RESUMO

Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47(phox-/-) mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47(phox-/-) bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1ß) release by p47(phox-/-) macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4(+)T cells and tissue infiltration of immune cells in T. cruzi infected p47(phox-/-) mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8(+)T cells was severely compromised in p47(phox-/-) mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8(+)T cell response with type 1 (IFN-γ(+)TNF-α>IL-4+IL-10), cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8(+)T cell response. In the event of NOX2 deficiency, a compromised CD8(+)T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Imunidade Celular , NADPH Oxidases/imunologia , Transdução de Sinais/imunologia , Trypanosoma cruzi/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Doença de Chagas/genética , Citocinas/genética , Citocinas/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , NADPH Oxidases/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/genética , Células Th1/imunologia , Células Th1/patologia
6.
Mol Cell Proteomics ; 11(4): M111.010918, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22199233

RESUMO

Inflammation and oxidative stress, elicited by Trypanosoma cruzi infection, are important pathologic events during progressive Chagasic cardiomyopathy. In this study, we infected Sprague-Dawley rats with T. cruzi, and treated with phenyl-α-tert-butylnitrone (PBN-antioxidant) and/or benznidazole (BZ-anti-parasite). We employed two-dimensional gel electrophoresis/mass spectrometry to investigate (a) the plasma proteomic changes associated with infection and disease development, and (b) the beneficial effects of PBN and BZ in controlling the disease-associated plasma profile. Matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) tandem MS (MS/MS) analysis of differentially expressed (total 146) and oxidized (total 48) protein spots yielded 92 unique proteins. Our data showed that treatment with PBN and BZ restored the differential expression of 65% and 30% of the disease-associated proteins to normal level, respectively, and PBN prevented development of oxidative adducts on plasma proteins. Western blotting to detect dinitrophenyl-derivatized carbonyl-proteins revealed plasma proteins were maximally oxidized during acute infection. Functional and disease/disorder analyses allocated a majority of the differentially expressed and oxidized proteins into inflammation/immunity and lipid metabolism categories and to molecular pathways associated with heart disease (e.g. cardiac infarction, contractile dysfunction, hypertrophy, and hypertension) in chagasic rats, and to curative pathways (e.g. ROS scavenging capacity, immune regulation) in infected rats treated with PBN and/or BZ. We validated the two-dimensional gel electrophoresis results by Western blotting, and demonstrated that the disease-associated increased expression of gelsolin and vimentin and release of cardiac MYL2 in the plasma of chagasic rats was returned to control level by PBN/BZ treatment. Increased plasma levels of gelsolin, MYL2 and vimentin were directly correlated with the severity of cardiac disease in human chagasic patients. Together, these results demonstrate the plasma oxidative and inflammatory response profile, and plasma detection of cardiac proteins parallels the pathologic events contributing to Chagas disease development, and is of potential utility in diagnosing disease severity and designing suitable therapy for management of human chagasic patients.


Assuntos
Proteínas Sanguíneas/metabolismo , Doença de Chagas/metabolismo , Proteoma/metabolismo , Animais , Biomarcadores/sangue , Miosinas Cardíacas/sangue , Doença de Chagas/tratamento farmacológico , Óxidos N-Cíclicos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Gelsolina/sangue , Cadeias Leves de Miosina/sangue , Nitroimidazóis/uso terapêutico , Carbonilação Proteica , Ratos , Ratos Sprague-Dawley , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi , Vimentina/sangue
7.
Mol Cell Proteomics ; 11(8): 435-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22543060

RESUMO

Chagas disease is initiated upon infection by Trypanosoma cruzi. Among the health consequences is a decline in heart function, and the pathophysiological mechanisms underlying this manifestation are not well understood. To explore the possible mechanisms, we employed IgY LC10 affinity chromatography in conjunction with ProteomeLab PF2D and two-dimensional gel electrophoresis to resolve the proteome signature of high and low abundance serum proteins in chagasic patients. MALDI-TOF MS/MS analysis yielded 80 and 14 differentially expressed proteins associated with cardiomyopathy of chagasic and other etiologies, respectively. The extent of oxidative stress-induced carbonyl modifications of the differentially expressed proteins (n = 26) was increased and coupled with a depression of antioxidant proteins. Functional annotation of the top networks developed by ingenuity pathway analysis of proteome database identified dysregulation of inflammation/acute phase response signaling and lipid metabolism relevant to production of prostaglandins and arachidonic acid in chagasic patients. Overlay of the major networks identified prothrombin and plasminogen at a nodal position with connectivity to proteome signature indicative of heart disease (i.e., thrombosis, angiogenesis, vasodilatation of blood vessels or the aorta, and increased permeability of blood vessel and endothelial tubes), and inflammatory responses (e.g., platelet aggregation, complement activation, and phagocyte activation and migration). The detection of cardiac proteins (myosin light chain 2 and myosin heavy chain 11) and increased levels of vinculin and plasminogen provided a comprehensive set of biomarkers of cardiac muscle injury and development of clinical Chagas disease in human patients. These results provide an impetus for biomarker validation in large cohorts of clinically characterized chagasic patients.


Assuntos
Biomarcadores/sangue , Doença de Chagas/sangue , Proteoma/análise , Proteômica/métodos , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Cardiomiopatia Chagásica/sangue , Cardiomiopatia Chagásica/metabolismo , Doença de Chagas/metabolismo , Eletroforese em Gel Bidimensional , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carbonilação Proteica , Proteoma/classificação , Proteoma/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
8.
Parasitol Res ; 113(9): 3159-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24948102

RESUMO

The protozoan parasite Trypanosoma cruzi causes Chagas disease. Cardiac and adipose tissues are among the early targets of infection and are sites of persistent infection. In the heart and adipose tissue, T. cruzi infection results in an upregulation of pro-inflammatory mediators. In the heart, infection is associated with an increase in the markers of oxidative stress. To date, markers of oxidative stress have not been evaluated in adipose tissue in this infection. Brown and white adipose tissues were obtained from CD-1 mice infected with the Brazil strain of T. cruzi for 15, 30, and 130 days post infection. Protein carbonylation and lipid peroxidation assays were performed on these samples. There was an upregulation of these markers of oxidative stress at all time-points in both white and brown adipose tissue. Determinants of anti-oxidative stress were downregulated at similar time-points. This increase in oxidative stress during T. cruzi infection most likely has a deleterious effect on host metabolism and on the heart.


Assuntos
Tecido Adiposo/metabolismo , Doença de Chagas/metabolismo , Estresse Oxidativo/fisiologia , Trypanosoma cruzi , Animais , Biomarcadores , Doença de Chagas/parasitologia , Regulação da Expressão Gênica , Masculino , Camundongos
9.
Infect Immun ; 81(11): 3966-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23918780

RESUMO

Neutrophils are the first cells to infiltrate to the site of Leishmania promastigote infection, and these cells help to reduce parasite burden shortly after infection is initiated. Several clinical reports indicate that neutrophil recruitment is sustained over the course of leishmaniasis, and amastigote-laden neutrophils have been isolated from chronically infected patients and experimentally infected animals. The goal of this study was to compare how thioglycolate-elicited murine neutrophils respond to L. amazonensis metacyclic promastigotes and amastigotes derived from axenic cultures or from the lesions of infected mice. Neutrophils efficiently internalized both amastigote and promastigote forms of the parasite, and phagocytosis was enhanced in lipopolysaccharide (LPS)-activated neutrophils or when parasites were opsonized in serum from infected mice. Parasite uptake resulted in neutrophil activation, oxidative burst, and accelerated neutrophil death. While promastigotes triggered the release of tumor necrosis factor alpha (TNF-α), uptake of amastigotes preferentially resulted in the secretion of interleukin-10 (IL-10) from neutrophils. Finally, the majority of promastigotes were killed by neutrophils, while axenic culture- and lesion-derived amastigotes were highly resistant to neutrophil microbicidal mechanisms. This study indicates that neutrophils exhibit distinct responses to promastigote and amastigote infection. Our findings have important implications for determining the impact of sustained neutrophil recruitment and amastigote-neutrophil interactions during the late phase of cutaneous leishmaniasis.


Assuntos
Leishmania mexicana/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/parasitologia , Animais , Morte Celular , Sobrevivência Celular , Feminino , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose , Explosão Respiratória , Fator de Necrose Tumoral alfa/metabolismo
10.
NPJ Vaccines ; 8(1): 188, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104118

RESUMO

This study investigated a candidate vaccine effect against maternal Trypanosoma cruzi (Tc) infection and improved pregnancy outcomes. For this, TcG2 and TcG4 were cloned in a nanoplasmid optimized for delivery, antigen expression, and regulatory compliance (nano2/4 vaccine). Female C57BL/6 mice were immunized with nano2/4, infected (Tc SylvioX10), and mated 7-days post-infection to enable fetal development during the maternal acute parasitemia phase. Females were euthanized at E12-E17 (gestation) days. Splenic and placental T-cell responses were monitored by flow cytometry. Maternal and placental/fetal tissues were examined for parasites by qPCR and inflammatory infiltrate by histology. Controls included age/immunization-matched non-pregnant females. Nano2/4 exhibited no toxicity and elicited protective IgG2a/IgG1 response in mice. Nano2/4 signaled a splenic expansion of functionally active CD4+ effector/effector memory (Tem) and central memory (Tcm) cells in pregnant mice. Upon challenge infection, nano2/4 increased the splenic CD4+ and CD8+T cells in all mice and increased the proliferation of CD4+Tem, CD4+Tcm, and CD8+Tcm subsets producing IFNγ and cytolytic molecules (PRF1, GZB) in pregnant mice. A balanced serum cytokines/chemokines response and placental immune characteristics indicated that pregnancy prevented the overwhelming damaging immune response in mice. Importantly, pregnancy itself resulted in a significant reduction of parasites in maternal and fetal tissues. Nano2/4 was effective in arresting the Tc-induced tissue inflammatory infiltrate, necrosis, and fibrosis in maternal and placental tissues and improving maternal fertility, placental efficiency, and fetal survival. In conclusion, we show that maternal nano2/4 vaccination is beneficial in controlling the adverse effects of Tc infection on maternal health, fetal survival, and pregnancy outcomes.

11.
Am J Pathol ; 178(3): 946-55, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21356345

RESUMO

Poly(ADP-ribosyl)ation, attaching the ADP-ribose polymer chain to the receptor protein, is a unique posttranslational modification. Poly(ADP-ribose) polymerase-1 (PARP-1) is a well-characterized member of the PARP family. In this review, we provide a general update on molecular structure and structure-based activity of this enzyme. However, we mainly focus on the roles of PARP-1 in inflammatory diseases. Specifically, we discuss the signaling pathway context that PARP-1 is involved in to regulate the pathogenesis of inflammation. PARP-1 facilitates diverse inflammatory responses by promoting inflammation-relevant gene expression, such as cytokines, oxidation-reduction-related enzymes, and adhesion molecules. Excessive activation of PARP-1 induces mitochondria-associated cell death in injured tissues and constitutes another mechanism for exacerbating inflammation.


Assuntos
Inflamação/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais , Animais , Morte Celular , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Inflamação/terapia , Poli(ADP-Ribose) Polimerases/química
12.
J Pathol ; 225(4): 583-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21952987

RESUMO

Trypanosoma cruzi, the aetiological agent of Chagas disease, invades nucleated mammalian cells including macrophages. In this study, we investigated the crosstalk between T. cruzi-induced immune activation of reactive oxygen species (ROS) and pro-inflammatory responses, and their role in myocardial pathology. Splenocytes of infected mice (C3H/HeN) responded to Tc-antigenic stimulus by more than a two-fold increase in NADPH oxidase (NOX) activity, ROS generation, cytokine production (IFN-γ > IL-4 > TNFα > IL1-ß≈ IL6), and predominant expansion of CD4(+) and CD8(+) T cells. Inhibition of NOX, but not of myeloperoxidase and xanthine oxidase, controlled the ROS (>98%) and cytokine (70-89%) release by Tc-stimulated splenocytes of infected mice. Treatment of infected mice with apocynin (NOX inhibitor) in drinking water resulted in a 50-90% decline in endogenous NOX/ROS and cytokine levels, and splenic phagocytes' proliferation. The splenic percentage of T cells was maintained, though more than a 40% decline in splenic index (spleen weight/body weight) indicated decreased T-cell proliferation in apocynin-treated/infected mice. The blood and tissue parasite burden were significantly increased in apocynin-treated/infected mice, yet acute myocarditis, ie inflammatory infiltrate consisting of macrophages, neutrophils, and CD8(+) T cells, and tissue oxidative adducts (eg 8-isoprostanes, 3-nitrotyrosine, and 4-hydroxynonenal) were diminished in apocynin-treated/infected mice. Consequently, hypertrophy (increased cardiomyocytes' size and ß-MHC, BNP, and ANP mRNA levels) and fibrosis (increased collagen, glycosaminoglycans, and lipid contents) of the heart during the chronic phase were controlled in apocynin-treated mice. We conclude that NOX/ROS is a critical regulator of the splenic response (phagocytes, T cells, and cytokines) to T. cruzi infection, and bystander effects of heart-infiltrating phagocytes and CD8(+) T cells resulting in cardiac remodelling in chagasic mice.


Assuntos
Cardiomiopatia Chagásica/enzimologia , Interações Hospedeiro-Parasita , NADPH Oxidases/antagonistas & inibidores , Trypanosoma cruzi/fisiologia , Animais , Crescimento Celular , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Coração/parasitologia , Hipertrofia , Masculino , Camundongos , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/parasitologia , Miócitos Cardíacos/patologia , Carga Parasitária , Espécies Reativas de Oxigênio/metabolismo , Receptor Cross-Talk , Baço/metabolismo , Baço/parasitologia , Baço/patologia , Linfócitos T/parasitologia , Linfócitos T/patologia
13.
J Biol Chem ; 285(15): 11596-606, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20145242

RESUMO

In this study, we demonstrate that human cardiomyocytes (AC16) produce reactive oxygen species (ROS) and inflammatory cytokines in response to Trypanosoma cruzi. ROS were primarily produced by mitochondria, some of which diffused to cytosol of infected cardiomyocytes. These ROS resulted in an increase in 8-hydroxyguanine lesions and DNA fragmentation that signaled PARP-1 activation evidenced by poly(ADP-ribose) (PAR) modification of PARP-1 and other proteins in infected cardiomyocytes. Phenyl-alpha-tert-butylnitrone blocked the mitochondrial ROS (mtROS) formation, DNA damage, and PARP-1 activation in infected cardiomyocytes. Further inhibition studies demonstrated that ROS and PARP-1 signaled TNF-alpha and IL-1beta expression in infected cardiomyocytes. ROS directly signaled the nuclear translocation of RelA (p65), NF-kappaB activation, and cytokine gene expression. PARP-1 exhibited no direct interaction with p65 and did not signal its translocation to nuclei in infected cardiomyocytes. Instead, PARP-1 contributed to PAR modification of p65-interacting nuclear proteins and assembly of the NF-kappaB transcription complex. PJ34 (PARP-1 inhibitor) also prevented mitochondrial poly(ADP-ribosyl)ation (PARylation) and ROS formation. We conclude that T. cruzi-mediated mtROS provide primary stimulus for PARP-1-NF-kappaB activation and cytokine gene expression in infected cardiomyocytes. PAR modification of mitochondrial membranes then results in a feedback cycle of mtROS formation and DNA damage/PARP-1 activation. ROS, either through direct modulation of cytosolic NF-kappaB, or via PARP-1-dependent PAR modification of p65-interacting nuclear proteins, contributes to cytokine gene expression. Our results demonstrate a link between ROS and inflammatory responses in cardiomyocytes infected by T. cruzi and provide a clue to the pathomechanism of sustained inflammation in Chagas disease.


Assuntos
Citocinas/biossíntese , Miócitos Cardíacos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio , Fator de Transcrição RelA/metabolismo , Trypanosoma cruzi/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Citosol/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Humanos , Inflamação , NF-kappa B/metabolismo , Transdução de Sinais
14.
Front Cell Infect Microbiol ; 11: 693051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178728

RESUMO

Trypanosoma cruzi is a digenetic parasite that requires triatomines and mammalian host to complete its life cycle. T. cruzi replication in mammalian host induces immune-mediated cytotoxic proinflammatory reactions and cellular injuries, which are the common source of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during the acute parasitemic phase. Mitochondrial dysfunction of electron transport chain has been proposed as a major source of superoxide release in the chronic phase of infection, which renders myocardium exposed to sustained oxidative stress and contributes to Chagas disease pathology. Sirtuin 1 (SIRT1) is a class III histone deacetylase that acts as a sensor of redox changes and shapes the mitochondrial metabolism and inflammatory response in the host. In this review, we discuss the molecular mechanisms by which SIRT1 can potentially improve mitochondrial function and control oxidative and inflammatory stress in Chagas disease.


Assuntos
Doença de Chagas , Sirtuínas , Animais , Doença de Chagas/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/metabolismo
15.
Expert Rev Vaccines ; 20(11): 1395-1406, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34406892

RESUMO

INTRODUCTION: Pathogenesis of Chagas disease (CD) caused by the protozoan parasite Trypanosoma cruzi (T. cruzi) involves chronic oxidative and inflammatory stress. In this review, we discuss the research efforts in therapeutic vaccine development to date and the potential challenges imposed by oxidative stress in achieving an efficient therapeutic vaccine against CD. AREAS COVERED: This review covers the immune and nonimmune mechanisms of reactive oxygen species production and immune response patterns during T. cruzi infection in CD. A discussion on immunotherapy development efforts, the efficacy of antigen-based immune therapies against T. cruzi, and the role of antioxidants as adjuvants is discussed to provide promising insights to developing future treatment strategies against CD. EXPERT OPINION: Administration of therapeutic vaccines can be a good option to confront persistent parasitemia in CD by achieving a rapid, short-lived stimulation of type 1 cell-mediated immunity. At the same time, adjunct therapies could play a critical role in the preservation of mitochondrial metabolism and cardiac muscle contractility in CD. We propose combined therapy with antigen-based vaccine and small molecules to control the pathological oxidative insult would be effective in the conservation of cardiac structure and function in CD.


Assuntos
Doença de Chagas , Vacinas Protozoárias , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Doença de Chagas/prevenção & controle , Humanos , Estresse Oxidativo , Vacinas Protozoárias/uso terapêutico , Desenvolvimento de Vacinas
16.
Microbiol Spectr ; 9(1): e0036421, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479416

RESUMO

Biomarkers for prognosis-based detection of Trypanosoma cruzi-infected patients presenting no clinical symptoms to cardiac Chagas disease (CD) are not available. In this study, we examined the performance of seven biomarkers in prognosis and risk of symptomatic CD development. T. cruzi-infected patients clinically asymptomatic (C/A; n = 30) or clinically symptomatic (C/S; n = 30) for cardiac disease and humans who were noninfected and healthy (N/H; n = 24) were enrolled (1 - ß = 80%, α = 0.05). Serum, plasma, and peripheral blood mononuclear cells (PBMCs) were analyzed for heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), vimentin, poly(ADP-ribose) polymerase (PARP1), 8-hydroxy-2-deoxyguanosine (8-OHdG), copeptin, endostatin, and myostatin biomarkers by enzyme-linked immunosorbent assay (ELISA) and Western blotting. Secreted hnRNPA1, vimentin, PARP1, 8-OHdG, copeptin, and endostatin were increased by 1.4- to 7.0-fold in CD subjects versus N/H subjects (P < 0.001) and showed excellent predictive value in identifying the occurrence of infection (area under the receiver operating characteristic [ROC] curve [AUC], 0.935 to 0.999). Of these, vimentin, 8-OHdG, and copeptin exhibited the best performance in prognosis of C/S (versus C/A) CD, determined by binary logistic regression analysis with the Cox and Snell test (R2C&S = 0.492 to 0.688). A decline in myostatin and increase in hnRNPA1 also exhibited good predictive value in identifying C/S and C/A CD status, respectively. Furthermore, circulatory 8-OHdG (Wald χ2 = 15.065), vimentin (Wald χ2 = 14.587), and endostatin (Wald χ2 = 17.902) levels exhibited a strong association with changes in left ventricular ejection fraction and diastolic diameter (P = 0.001) and predicted the risk of cardiomyopathy development in CD patients. We have identified four biomarkers (vimentin, 8-OHdG, copeptin, and endostatin) that offer excellent value in prognosis and risk of symptomatic CD development. Decline in these four biomarkers and increase in hnRNPA1 would be useful in monitoring the efficacy of therapies and vaccines in halting CD. IMPORTANCE There is a lack of validated biomarkers for diagnosis of T. cruzi-infected individuals at risk of developing heart disease. Of the seven potential biomarkers that were screened, vimentin, 8-OHdG, copeptin, and endostatin exhibited excellent performance in distinguishing the clinical severity of Chagas disease. A decline in these four biomarkers can also be used for monitoring the therapeutic responses of infected patients to established or newly developed drugs and vaccines and precisely inform the patients about their progress. These biomarkers can easily be screened using the readily available plasma/serum samples in the clinical setting by an ELISA that is inexpensive, fast, and requires low-tech resources at the facility, equipment, and personnel levels.


Assuntos
Biomarcadores/sangue , Cardiomiopatia Chagásica/sangue , Cardiomiopatia Chagásica/diagnóstico , Doença de Chagas , Humanos , Leucócitos Mononucleares , Poli(ADP-Ribose) Polimerase-1/metabolismo , Prognóstico , Trypanosoma cruzi , Função Ventricular Esquerda
17.
NPJ Vaccines ; 6(1): 114, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497271

RESUMO

The development of suitable safe adjuvants to enhance appropriate antigen-driven immune responses remains a challenge. Here we describe the adjuvant properties of a small molecule activator of the integrins αLß2 and α4ß1, named 7HP349, which can be safely delivered systemically independent of antigen. 7HP349 directly activates integrin cell adhesion receptors crucial for the generation of an immune response. When delivered systemically in a model of Chagas disease following immunization with a DNA subunit vaccine encoding candidate T. cruzi antigens, TcG2 and TcG4, 7HP349 enhanced the vaccine efficacy in both prophylactic and therapeutic settings. In a prophylactic setting, mice immunized with 7HP349 adjuvanted vaccine exhibited significantly improved control of acute parasite burden in cardiac and skeletal muscle as compared to vaccination alone. When administered with vaccine therapeutically, parasite burden was again decreased, with the greatest adjuvant effect of 7HP349 being noted in skeletal muscle. In both settings, adjuvantation with 7HP349 was effective in decreasing pathological inflammatory infiltrate, improving the integrity of tissue, and controlling tissue fibrosis in the heart and skeletal muscle of acutely and chronically infected Chagas mice. The positive effects correlated with increased splenic frequencies of CD8+T effector cells and an increase in the production of IFN-γ and cytolytic molecules (perforin and granzyme) by the CD4+ and CD8+ effector and central memory subsets in response to challenge infection. This demonstrates that 7HP349 can serve as a systemically administered adjuvant to enhance T cell-mediated immune responses to vaccines. This approach could be applied to numerous vaccines with no reformulation of existing stockpiles.

18.
mBio ; 11(6)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172999

RESUMO

Chagas disease (CD), caused by Trypanosoma cruzi, is a degenerative heart condition. In the present study, we investigated the role of poly [ADP-ribose] polymerase 1/activator protein 1 (PARP1/AP-1) in upregulation of profibrotic macrophages (Mϕ) and subsequent development of cardiac fibrosis in CD. We used in vitro and in vivo models of T. cruzi infection and chemical and genetic inhibition of Parp1 to examine the molecular mechanisms by which Mϕ might augment profibrotic events in CD. Cultured (RAW 264.7 and THP-1) Mϕ infected with T. cruzi and primary cardiac and splenic Mϕ of chronically infected mice exhibited a significant increase in the expression, activity, and release of metalloproteinases (MMP2, MMP9, and MMP12) and the cytokine transforming growth factor ß (TGF-ß). Mϕ release of MMPs and TGF-ß signaled the cardiac fibroblast to myofibroblast differentiation, as evidenced by a shift from S100A4 to alpha smooth muscle actin (α-SMA) expression. Incubation of infected Mϕ with MMP2 and MMP9 inhibitors resulted in 60 to 74% decline in TGF-ß release, and MMP9 and PARP1 inhibitors resulted in 57 to 70% decline in Mϕ TGF-ß-driven cardiac fibroblast differentiation. Likewise, histological studies showed a 12- to 16-fold increase in myocardial expression of CD68 (Mϕ marker) and its colocalization with MMP9/TGF-ß, galectin-3, and vimentin in wild-type mice with CD. In comparison, chronically infected Parp1-/- mice exhibited a >50% decline in myocardial levels of Mϕ and associated fibrosis markers. Further study showed that PARP1 synergized with c-Fos and JunB AP-1 family members for transcriptional activation of profibrotic response after T. cruzi infection. We conclude that PARP1 inhibition offers a potential therapy for controlling the T. cruzi-driven fibroblast differentiation in CD through modulation of the Mϕ signaling of the AP-1-MMP9-TGF-ß pathway.IMPORTANCE Cardiomyopathy is the most important clinical manifestation of T. cruzi-driven CD. Recent studies have suggested the detrimental role of the matrix metalloproteinases MMP2 and MMP9 in extracellular matrix (ECM) degradation during cardiac remodeling in T. cruzi infection. Peripheral TGF-ß levels are increased in clinically symptomatic CD patients over those in clinically asymptomatic seropositive individuals. We provide the first evidence that during T. cruzi infection, Mϕ release of MMP2 and MMP9 plays an active role in activation of TGF-ß signaling of ECM remodeling and cardiac fibroblast-to-myofibroblast differentiation. We also determined that PARP1 signals c-Fos- and JunB-mediated AP-1 transcriptional activation of profibrotic gene expression and demonstrated the significance of PARP1 inhibition in controlling chronic fibrosis in Chagas disease. Our study provides a promising therapeutic approach for controlling T. cruzi-driven fibroblast differentiation in CD by PARP1 inhibitors through modulation of the Mϕ signaling of the AP-1-MMP9-TGF-ß pathway.


Assuntos
Doença de Chagas/parasitologia , Fibroblastos/citologia , Macrófagos/metabolismo , Metaloproteases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/fisiologia , Animais , Diferenciação Celular , Doença de Chagas/genética , Doença de Chagas/metabolismo , Doença de Chagas/fisiopatologia , Feminino , Fibroblastos/metabolismo , Coração/parasitologia , Interações Hospedeiro-Parasita , Humanos , Masculino , Metaloproteases/genética , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/genética , Células RAW 264.7 , Transdução de Sinais , Fator de Transcrição AP-1/genética , Ativação Transcricional , Fator de Crescimento Transformador beta/genética , Trypanosoma cruzi/genética , Regulação para Cima
19.
Front Immunol ; 11: 622602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679710

RESUMO

Innate immune cells play the first line of defense against pathogens. Phagocytosis or invasion by pathogens can affect mitochondrial metabolism in macrophages by diverse mechanisms and shape the macrophage response (proinflammatory vs. immunomodulatory) against pathogens. Besides ß-nicotinamide adenine dinucleotide 2'-phosphate, reduced (NADPH) oxidase, mitochondrial electron transport chain complexes release superoxide for direct killing of the pathogen. Mitochondria that are injured are removed by mitophagy, and this process can be critical for regulating macrophage activation. For example, impaired mitophagy can result in cytosolic leakage of mitochondrial DNA (mtDNA) that can lead to activation of cGAS-STING signaling pathway of macrophage proinflammatory response. In this review, we will discuss how metabolism, mtDNA, mitophagy, and cGAS-STING pathway shape the macrophage response to infectious agents.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Macrófagos/imunologia , Mitocôndrias/imunologia , Transdução de Sinais/imunologia , Animais , DNA Mitocondrial/imunologia , Humanos , Mitofagia/imunologia , Fagocitose
20.
Front Immunol ; 11: 595039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414785

RESUMO

A parasitic protozoan Trypanosoma cruzi (T. cruzi) is the etiologic agent of Chagas disease. Previously, we have identified T. cruzi antigens TcG2 and TcG4 as potential vaccine candidates, cloned in eukaryotic expression vector pCDNA3.1 (referred as p2/4) and tested their ability to elicit protection from T. cruzi infection. In the present study, we subcloned the two antigens in a nanoplasmid that is optimized for delivery, antigen expression, and regulatory compliance standards, and evaluated the nanovaccine (referred as nano2/4) for prophylactic protection against repeat T. cruzi infections. For this, C57BL/6 mice were immunized with two doses of p2/4 or nano2/4 at 21 days interval, challenged with T. cruzi 21 days after 2nd immunization, and euthanized at 10- and 21-days post-infection (pi) corresponding to parasite dissemination and replication phase, respectively. Some mice were re-challenged 21 days pi and monitored at 7 days after re-infection. Without the help of a vaccine, T. cruzi elicited delayed and sub-par T cell activation and low levels of effector molecules that failed to control tissue dissemination and replication of the parasite and provided no protection against repeat challenge infection. The nano2/4 was most effective in eliciting an early activation and production of IFN-γ by CD4+T effector/effector memory (TEM) cells and cytolytic perforin (PFN) and granzyme B (GZB) molecules by CD4+ and CD8+ TEM subsets at 10 days pi that was followed by robust expansion of CD4+ and CD8+ TEM and TCM cells with further increase in IFN-γ production at 21 days pi. Consequently, nano2/4-immunized mice exhibited potent control of parasite dissemination at 10 days pi, and tissue parasite burden and tissue inflammatory infiltrate and necrosis were barely detectable at 21 days pi. Furthermore, nano2/4-immunized mice responded to re-challenge infection with high levels of effector molecules production by CD4+ and CD8+ TEM subpopulations that offered even better control of tissue parasite burden than was observed after 1st infection. In comparison, non-vaccinated/infected mice exhibited clinical features of sickness and 59% mortality within 7 days after re-infection. In conclusion, we show that delivery of TcG2 and TcG4 in nanoplasmid offers excellent, protective T cell immunity against repeat T. cruzi infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Imunidade Celular/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Vacinas Protozoárias/farmacologia , Trypanosoma cruzi/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular , Camundongos , Vacinas Protozoárias/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa