Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 47(11): 947-964, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32895764

RESUMO

The biomanufacturing industry has now the opportunity to upgrade its production processes to be in harmony with the latest industrial revolution. Technology creates capabilities that enable smart manufacturing while still complying with unfolding regulations. However, many biomanufacturing companies, especially in the biopharma sector, still have a long way to go to fully benefit from smart manufacturing as they first need to transition their current operations to an information-driven future. One of the most significant obstacles towards the implementation of smart biomanufacturing is the collection of large sets of relevant data. Therefore, in this work, we both summarize the advances that have been made to date with regards to the monitoring and control of bioprocesses, and highlight some of the key technologies that have the potential to contribute to gathering big data. Empowering the current biomanufacturing industry to transition to Industry 4.0 operations allows for improved productivity through information-driven automation, not only by developing infrastructure, but also by introducing more advanced monitoring and control strategies.


Assuntos
Indústrias , Tecnologia , Automação
2.
Adv Biochem Eng Biotechnol ; 176: 1-34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33349908

RESUMO

The bio-manufacturing industry, along with other process industries, now has the opportunity to be engaged in the latest industrial revolution, also known as Industry 4.0. To successfully accomplish this, a physical-to-digital-to-physical information loop should be carefully developed. One way to achieve this is, for example, through the implementation of digital twins (DTs), which are virtual copies of the processes. Therefore, in this paper, the focus is on understanding the needs and challenges faced by the bio-manufacturing industry when dealing with this digitalized paradigm. To do so, two major building blocks of a DT, data and models, are highlighted and discussed. Hence, firstly, data and their characteristics and collection strategies are examined as well as new methods and tools for data processing. Secondly, modelling approaches and their potential of being used in DTs are reviewed. Finally, we share our vision with regard to the use of DTs in the bio-manufacturing industry aiming at bringing the DT a step closer to its full potential and realization.


Assuntos
Indústrias , Indústria Manufatureira
3.
Sci Total Environ ; 751: 141706, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181990

RESUMO

Industrial parks have a high potential for recycling and reusing resources such as water across companies by creating symbiosis networks. In this study, we introduce a mathematical optimization framework for the design of water network integration in industrial parks formulated as a large-scale standard mixed-integer non-linear programming (MINLP) problem. The novelty of our approach relies on i) developing a multi-level incremental optimization framework for water network synthesis, ii) including prior knowledge of water demand growth and projected water scarcity to evaluate the significance of water-saving solutions, iii) incorporating a comprehensive formulation of the water network synthesis problem including multiple pollutants and different treatment units and iv) performing a multi-objective optimization of the network including freshwater savings and relative cost of the network. The significance of the proposed optimization framework is illustrated by applying it to an existing industrial park in a water-scarce region in Kenya. Firstly, we illustrated the benefits of including prior knowledge to prevent an over-design of the network at the early stages. In the case study, we achieved a more flexible and expandable water network with 36% lower unit cost at the early stage and 15% lower unit cost at later stages for overall maximum freshwater savings of 25%. Secondly, multi-objective analysis suggests an optimum freshwater savings of 14% to reduce the unit cost of the network by half. Moreover, the significance of symbiosis networks is highlighted by showing that intra-company connections can only achieve a maximum freshwater savings of 17% with significantly higher unit cost (+45%). Finally, we showed that the values of symbiosis connectivity index in the Pareto front correspond to higher freshwater savings, indicating the significant role of the symbiosis network in the industrial park under study. This is the first study, where all the above elements have been taken into account simultaneously for the design of a water reuse network.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa