Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Environ Res ; 257: 119399, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866312

RESUMO

River and reservoir ecosystems have been considered as hot spots for GHG (greenhouse gas) emissions while their specific hydrological and biogeochemical processes affect GHG concentrations; however, few studies integrated river-reservoir systems to identify the dominant drivers of GHG concentrations and flux changes associated with these systems. In the present study, we examined the seasonal variations in GHG concentrations in the surface water of three river-reservoir systems in the Seine Basin. The levels and seasonal variations of GHG concentrations exhibited distinct patterns among reservoirs, upstream, and downstream rivers. The concentrations of CH4 (methane) in the reservoirs were notably higher than those observed in both upstream and downstream rivers and showed higher values in summer and autumn, which contrasted with CO2 (carbon dioxide) concentrations, while N2O (nitrous oxide) concentrations did not show an obvious seasonal pattern. A high mole ratio of CH4/CO2 was found in these reservoirs, with a value of 0.03 and was more than 30 and 10 times higher than that in the upstream and downstream rivers, respectively. The three river-reservoir systems were oversaturated with GHG during the study period, with the average diffusive fluxes (expressed as CO2eq: CO2 equivalent) of 810 ± 1098 mg CO2eq m-2 d-1, 9920 ± 2413 mg CO2eq m-2 d-1, and 7065 ± 2704 mg CO2eq m-2 d-1 in the reservoirs, upstream and downstream rivers, respectively. CO2 and CH4-CO2 were respectively the dominant contributors to GHG diffusive fluxes in river and reservoir sections, while N2O contributed negligibly to GHG diffusive fluxes in the three river-reservoir systems. Our results showed that GHG concentrations and gas transfer coefficient have varying importance in driving GHG diffusive fluxes among different sections of the river-reservoir systems. In addition, our results also show the combined effect of reservoirs and upstream rivers on the water quality variables and hydrological characteristics of downstream rivers, highlighting the future need for additional investigations of GHG processes in the river-reservoir systems.

2.
J Environ Manage ; 337: 117732, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36944291

RESUMO

Ammonia (NH3) volatilization, nitrous oxide (N2O) emissions, and nitrate (NO3-) leaching from agriculture cause severe environmental hazards. Research studies and mitigation strategies have mostly focused on one of these nitrogen (N) losses at a time, often without an integrated view of the agro-food system. Yet, at the regional scale, N2O, NH3, and NO3- loss patterns reflect the structure of the whole agro-food system. Here, we analyzed at the resolution of NUTS2 administrative European Union (EU) regions, N fluxes through the agro-food systems of a Temperate-Mediterranean gradient (France, Spain, and Portugal) experiencing contrasting climate and soil conditions. We assessed the atmospheric and hydrological N emissions from soils and livestock systems. Expressed per ha agricultural land, NH3 volatilization varied in the range 6.2-44.4 kg N ha-1 yr-1, N2O emission and NO3 leaching 0.3-4.9 kg N ha-1 yr-1 and 5.4-154 kg N ha-1 yr-1 respectively. Overall, lowest N2O emission was found in the Mediterranean regions, where NO3- leaching was greater. NH3 volatilization in both temperate and Mediterranean regions roughly follows the distribution of livestock density. We showed that these losses are also closely correlated with the level of fertilization intensity and agriculture system specialization into either stockless crop farming or intensive livestock farming in each region. Moreover, we explored two possible future scenarios at the 2050 horizon: (1) a scenario based on the prescriptions of the EU-Farm-to-Fork (F2F) strategy, with 25% of organic farming, 10% of land set aside for biodiversity, 20% reduction in N fertilizers, and no diet change; and (2) a hypothetical agro-ecological (AE) scenario with generalized organic farming, reconnection of crop and livestock farming, and a healthier human diet with an increase in the share of vegetal protein to 65% (i.e., the Mediterranean diet). Results showed that the AE scenario, owing to its profound reconfiguration of the entire agro-food system would have the potential for much greater reductions in NH3, N2O, and NO3- emissions, namely, 60-81% reduction, while the F2F scenario would only reach 24-35% reduction of N losses.


Assuntos
Agricultura , Nitrogênio , Humanos , Nitrogênio/análise , Agricultura/métodos , Solo/química , Amônia/análise , Fazendas , Fertilizantes , Óxido Nitroso/análise
3.
J Environ Manage ; 205: 18-28, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28963875

RESUMO

The sustainability of phosphorus (P) fertilization in cropping systems is an important issue because P resources on earth are limited and excess P in soils can lead to ecological damage such as eutrophication. Worldwide, there is an increasing interest in organic farming (OF) due to its good environmental performance. However, organic cropping systems are suspected of generating negative P budgets, which questions their ability to provide sustainable P management. The design of agricultural systems at a broader scale also largely influences the shape of the P cycle and the possibility of its recycling to cropland. In this context, the aim of this study was to assess the relative influence of (i) OF versus conventional farming (CF) practices and (ii) the structure of agro-food systems at the regional scale, on P cycling and availability on cropland. For this purpose, we examined P budgets and soil P status of 14 organic and conventional cropping systems in commercial farms located in the Paris Basin. Available P was analyzed using two different methods: resin P and Olsen P. The results revealed no significant differences between CF and OF in available P stocks. Phosphorus budgets were always negative and significantly lower in CF systems, indicating that P was mined from soil reserves. In parallel, we estimated P budgets over cropland in all French regions for two distinct periods, 2004-2014 and 1970-1981, and showed that specialized intensive cropping systems in the Paris Basin led to a high, positive P budget in the latter period. However, this trend was reversed in the 2004-2014 period due to a sharp reduction of the mineral fertilizer application rate. The shift from very high P budgets to much lower and sometimes negative P budgets would not be a threat for agriculture due to the current high level of Olsen P in these regions, which was consistent with our measurements at the plot scale. Overall, these results suggest that OF would not lead to more P deficiency than CF. Instead, they emphasize that sustainable P management not only depends on farmers' choices but mainly on the structure and specialization of agro-food systems.


Assuntos
Fazendas , Fósforo , Agricultura , Produtos Agrícolas , Paris
4.
Environ Monit Assess ; 188(9): 517, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27523602

RESUMO

Many studies have been published on the use of models to assess water quality through faecal contamination levels. However, the vast majority of this work has been conducted in developed countries and similar studies from developing countries in tropical regions are lacking. Here, we used the Seneque/Riverstrahler model to investigate the dynamics and seasonal distribution of total coliforms (TC), an indicator of faecal contamination, in the Red River (Northern Vietnam) and its upstream tributaries. The results of the model showed that, in general, the overall correlations between the simulated and observed values of TC follow a 1:1 relationship at all examined stations. They also showed that TC numbers were affected by both land use in terms of human and livestock populations and by hydrology (river discharge). We also developed a possible scenario based on the predicted changes in future demographics and land use in the Red River system for the 2050 horizon. Interestingly, the results showed only a limited increase of TC numbers compared with the present situation at all stations, especially in the upstream Vu Quang station and in the urban Ha Noi station. This is probably due to the dominance of diffuse sources of contamination relative to point sources. The model is to our knowledge one of the first mechanistic models able to simulate spatial and seasonal variations of microbial contamination (TC numbers) in the whole drainage network of a large regional river basin covering both urban and rural areas of a developing country.


Assuntos
Monitoramento Ambiental/métodos , Fezes/microbiologia , Modelos Teóricos , Rios/microbiologia , Animais , Enterobacteriaceae , Humanos , Gado , Densidade Demográfica , Estações do Ano , Vietnã , Poluentes da Água , Qualidade da Água
5.
Sci Total Environ ; 892: 164467, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37268115

RESUMO

Along its route through the agro-food system nitrogen (N) can be wasted, heightening diverse environmental problems. Geopolitical instabilities affect prices of N fertilisers and livestock feed, challenging production systems and increasing their need to reduce N waste. The analysis of N flows is essential to understanding the agroenvironmental performance of agro-food systems to detect leakages and to design strategies for reducing N pollution while producing feed and food. Sectorial analyses can mislead conclusions, prompting the need for integrated approaches. We present a multiscale analysis of N flows for the 1990-2015 period to identify both the strengths and weaknesses of the Spanish agro-food system. We constructed N budgets at three system scales, namely crop, livestock and the agro-food system, and at two spatial scales: national and regional (50 provinces). The big picture shows a country with increasing crop (575 to 634 GgN/yr) and livestock (138 to 202 GgN/yr, edible) production and nitrogen use efficiency improvements, especially for certain crop and livestock categories. Nevertheless, this falls short of reducing agricultural surpluses (812 GgN/yr) and external dependency, which is closely related to the externalisation of certain environmental impacts (system NUE, from 31 % to 19 % considering externalisation). The regional picture shows the contrasted operation between provinces, assigned to three agro-food system categories: fuelled by synthetic fertiliser (29 provinces), grassland inputs to livestock (5 provinces) or the net import of feed (16 provinces). Regional specialisation on crop or livestock production was reinforced, hampering good recirculation of N through livestock feed from regional cropland and their N fertilisation by regional livestock excretion. We conclude that pollution and external dependency need to be further reduced in Spain. To do so, the big picture of the full system is paramount but must be adapted to the regional particularities.


Assuntos
Agricultura , Nitrogênio , Animais , Meio Ambiente , Alimentos , Poluição Ambiental , Gado , Fertilizantes
6.
Sci Total Environ ; 889: 164249, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209724

RESUMO

Irrigation, one of the 28 agri-environmental indicators defined in the European Common Agricultural Policy, is often neglected in agricultural nitrogen (N) budgets, while it can be a considerable source of N in irrigated agriculture. The annual N input from irrigation water sources (NIrrig) to cropping systems was quantified for Europe for 2000-2010 at a resolution of 10 × 10 km, accounting for crop-specific gross irrigation requirements (GIR) and surface- and groundwater nitrate concentration. GIR were computed for 20 crops, while spatially explicit nitrate concentration in groundwater was derived using a random forest model. We show that although GIR were relatively stable (46-60 km3 yr-1), the Nirrig in Europe increased over the 10-year period (184 to 259 Gg N yr-1), approximately 68 % of which occurred in the Mediterranean region. The main hotspots appeared in areas with both high irrigation requirements and high groundwater nitrate concentration, reaching up to averaged values of 150 kg N ha-1 yr1. These were mainly located in Mediterranean Europe (Greece, Portugal and Spain) and to a lesser extent in Northern Europe (The Netherlands, Sweden and Germany). By not including NIrrig, environmental and agricultural policies are underestimating the real extent of N pollution hotspots in European irrigated systems.


Assuntos
Água Subterrânea , Nitrogênio , Nitrogênio/análise , Nitratos/análise , Agricultura , Europa (Continente) , Ciclo do Nitrogênio , Irrigação Agrícola
7.
Water Res ; 213: 118158, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149362

RESUMO

The global increase in the construction of reservoirs has drawn attention given its documented hydrological and biogeochemical impacts on downstream rivers; however, the impact of reservoirs on downstream pCO2 (partial pressure of carbon dioxide) is still poorly understood. To evaluate these impacts, the interactions between reservoirs and their corresponding upstream and downstream rivers were analyzed for three reservoirs in the Seine Basin based on monthly measurement during two hydrological years. The seasonal variations of water quality in the reservoirs were mainly driven by the entering water and the biogeochemical processes occurring in the reservoirs. Our results unravel the crucial role of reservoir in downstream water quality, which significantly increased DOC (dissolved organic carbon) and BDOC (biodegradable DOC) concentrations, while lowered DSi (dissolved silica) concentrations during emptying period (p < 0.01). Furthermore, the impacts of reservoirs on the annual fluxes of DOC, BDOC, and DSi were quantified and suggested that the three reservoirs respectively increased 20% and 23% of annual fluxes of DOC and BDOC, while decreased 33% of annual DSi fluxes in their downstream rivers. Additionally, the reservoirs significantly decreased downstream riverine pCO2 (p < 0.01), and enhanced the gas transfer coefficient of CO2 in downstream rivers by 1.3 times during the emptying period, which highlights the necessity to consider the potential impact of reservoirs on riverine CO2 emissions. Overall, our results highlight the importance of combining biogeochemical and hydrological characteristics to understand the impacts of reservoirs on downstream rivers, and emphasize the need of similar studies under the current context of increasing reservoir constructions.

8.
Water Res ; 225: 119135, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155003

RESUMO

Reservoirs are active reactors for the biogeochemical cycling of carbon (C) and nutrients (nitrogen: N, phosphorus: P, and silica: Si), however, our in-depth understanding of C and nutrient cycling in reservoirs is still limited by the fact that it involves a variety of closely linked and coupled biogeochemical and hydrological processes. In this study, the updated process-based Barman model was applied to three reservoirs of the Seine Basin during 2019-2020, considering the variations of carbon dioxide (CO2) concentrations and key water quality variables. The model simulations captured well the observed seasonal variations of water quality variables, although discrepancies remained for some variables. According to the model, we found that: (1) the three reservoirs are autotrophic ecosystems and showed high removal efficiency of dissolved inorganic carbon and nutrients during 2019-2020; (2) phytoplankton assimilation, benthic denitrification, precipitation and dissolution of calcium carbonate, and gas exchange at the water-air interface are the dominant processes for water quality variations in reservoirs; (3) based on scenarios results, trophic state and mean water depth of reservoir would impact the biogeochemical processes and the retention efficiency of nitrate and dissolved silicate. Finally, we expect that the successful application of Barman model in the reservoirs of the Seine Basin could provide a useful tool for simulating reservoir water quality changes and thus evaluating the impacts of reservoirs on downstream water quality.


Assuntos
Dióxido de Carbono , Ecossistema , Nitratos , Fósforo/análise , Nitrogênio/análise , Nutrientes , Carbonato de Cálcio , Dióxido de Silício , Monitoramento Ambiental , China
9.
Water Res ; 222: 118874, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914498

RESUMO

For mitigation of climate change, all sources and sinks of greenhouse gases from the environment must be quantified and their driving factors identified. Nitrous oxide (N2O) is a strong greenhouse gas, and the contribution of aquatic systems to the global N2O budget remains poorly constrained. In this study, we measured N2O concentrations in a eutrophic coastal system, Roskilde Fjord (Denmark), and combined measurements with statistical modeling to quantify the N2O fluxes and budget in the system over a period of six months. To do so, we collected water at 15 sampling points and measured N2O concentrations along with physico-chemical water quality parameters, e.g. temperature, salinity, dissolved inorganic nitrogen and phosphorus, and silicon. We used mixed-effect regression models to predict N2O concentrations in the water from water quality parameters. We then derived N2O fluxes using well-established equations of N2O solubility and water-atmosphere exchanges. These fluxes were then put in perspective with those measured at the landscape scale by eddy-covariance at a 96 m nearby tall tower, and to those estimated from the agricultural land next to the fjord using Intergovernmental Panel on Climate Change (IPCC) guidelines. N2O concentrations in the Roskilde Fjord ranged between 2.40 and 8.05 nmol l-1. The best fitting model between water parameters and N2O concentrations in water included phosphorus and temperature. We estimated that (i) Roskilde Fjord was a sink of N2O, with a median inward flux of -0.04 nmol m-2 s-1, (ii) while the surrounding median agricultural flux was 0.13-0.18 nmol m-2 s-1, and (iii) the median landscape flux was 0.07 nmol m-2 s-1. All estimates of N2O fluxes were of the same magnitude and consistent with each other. These preliminary results need to be consolidated by further research.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Monitoramento Ambiental/métodos , Estuários , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Fósforo
10.
Environ Pollut ; 303: 119105, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35276252

RESUMO

Estuaries are considered as important sources of the global emission of greenhouse gases (GHGs). Urbanized estuaries often experience eutrophication under strong anthropogenic activities. Eutrophication can enhance phytoplankton abundance, leading to carbon dioxide (CO2) consumption in the water column. Only a few studies have evaluated the relationship between GHGs and eutrophication in estuaries. In this study, we assessed the concentrations and fluxes of CO2, methane (CH4) and nitrous oxide (N2O) in combination with a suite of biogeochemical variables in four sampling campaigns over two years in a highly urbanized tropical estuary in Southeast Asia (the Saigon River Estuary, Vietnam). The impact of eutrophication on GHGs was evaluated through several statistical methods and interpreted by biological processes. The average concentrations of CO2, CH4 and N2O at the Saigon River in 2019-2020 were 3174 ± 1725 µgC-CO2 L-1, 5.9 ± 16.8 µgC-CH4 L-1 and 3.0 ± 4.8 µgN-N2O L-1, respectively. Their concentrations were 13-18 times, 52-332 times, and 9-37 times higher than the global mean concentrations of GHGs, respectively. While CO2 concentration had no clear seasonal pattern, N2O and CH4 concentrations significantly differed between the dry and the rainy seasons. The increase in eutrophication status along the dense urban area was linearly correlated with the increase in GHGs concentrations. The presence of both nitrification and denitrification resulted in elevated N2O concentrations in this urban area of the estuary. The high concentration of CO2 was contributed by the high concentration of organic carbon and mineralization process. GHGs fluxes at the Saigon River Estuary were comparable to other urbanized estuaries regardless of climatic condition. Control of eutrophication in urbanized estuaries through the implantation of efficient wastewater treatment facilities will be an effective solution in mitigating the global warming potential caused by estuarine emissions.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Monitoramento Ambiental , Estuários , Eutrofização , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise
11.
Sci Total Environ ; 778: 146412, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030354

RESUMO

Artificial reservoirs represent one of the most significant human disturbances of water flows and associated water quality, including nutrients and SM (suspended matter). However, most of the previous studies were only focused on few years or even single year, and the long-term dynamics of nutrient retention in reservoir are under explored. In this study, we present the long-term (1998-2018) hydrological characteristics and water quality in four reservoirs (Marne, Aube, Seine, and Pannecière reservoirs) and their related rivers (Marne, Aube, Seine, and Yonne rivers) of the Seine Basin, France. Based on the hydrology and water quality data, the long-term budgets of nutrients and SM were evaluated in these reservoirs according to mass balance calculation. The results indicated that the four reservoirs play important roles in the retention/elimination of nutrients and SM, and the retention/elimination rates may be affected by hydrophysical and biogeochemical processes. The mean annual retention rates accounted for 16-53% of the inputs of DIN (dissolved inorganic nitrogen), 26-48% of PO43--P (orthophosphates), 22-40% of Si (dissolved silicon), and 36-76% of SM in the four reservoirs during the 1998-2018 period. Further analysis suggested that the annual residence time and the percentage of water released from reservoirs during the filling period significantly correlated with DIN retention rates in the four reservoirs (p < 0.01), which highlights the importance of reservoir water management strategies for the DIN concentrations in the downstream rivers. Interestingly, the Wilcoxon test results also revealed that the three diverted reservoirs (Marne, Aube, and Seine reservoirs) indeed lowered the nutrient concentrations in their downstream rivers during the emptying period, thereby modifying the biogeochemical functioning in the downstream river networks. Finally, these results emphasized the importance of hydrological characteristics in better understanding nutrient retention in reservoirs.

12.
Sci Data ; 8(1): 288, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716345

RESUMO

This paper presents EuropeAgriDB v1.0, a dataset of crop production and nitrogen (N) flows in European cropland 1961-2019. The dataset covers 26 present-day countries, detailing the cropland N harvests in 17 crop categories as well as cropland N inputs in synthetic fertilizers, manure, symbiotic fixation, and atmospheric deposition. The study builds on established methods but goes beyond previous research by combining data from FAOSTAT, Eurostat, and a range of national data sources. The result is a detailed, complete, and consistent dataset, intended as a basis for further analyses of past and present agricultural production patterns, as well as construction of scenarios for the future.


Assuntos
Produção Agrícola , Fertilizantes , Pradaria , Nitrogênio , Europa (Continente) , Nitrogênio/análise
13.
Sci Total Environ ; 779: 146614, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030255

RESUMO

Constructed wetlands (CW) can efficiently remove nitrogen from polluted agricultural run-off, however, a potential caveat is nitrous oxide (N2O), a harmful greenhouse gas and stratospheric ozone depleter. During five sampling campaigns, we measured N2O fluxes from a 0.53 ha off-stream CW treating nitrate-rich water from the intensively fertilized watershed in Rampillon, France, using automated chambers with a quantum cascade laser system, and manual chambers. Sediment samples were analysed for potential N2 flux using the HeO2 incubation method. Both inlet nitrate (NO3-) concentrations and N2O emission varied significantly between the seasons. In the Autumn and Winter inlet concentrations were about 11 mg NO3--N L-1, and < 6.5 mg NO3--N L-1 in the Spring and Summer. N2O emission was highest in the Autumn (mean ± standard error: 9.7 ± 0.2 µg N m-2 h-1) and lowest in the Summer (wet period: 0.2 ± 0.3 µg N m-2 h-1). The CW was a very weak source of N2O emitting 0.32 kg N2O-N ha-1 yr-1 and removing around 938 kg NO3--N ha-1 yr-1, the ratio of N2O-N emitted to NO3--N removed was 0.033%. The automated and manual chambers gave similar results. From the potential N2O formation in the sediment, only 9% was emitted to the atmosphere, the average N2 N 2O ratio was high: 89:1 for N2-Npotential: N2O-Npotential and 1353:1 for N2-Npotential: N2O-Nemitted. These results indicate complete denitrification. The focused principal component analysis showed strong positive correlation between the gaseous N2O fluxes and the following environmental factors: NO3--N concentrations in inlet water, streamflow, and nitrate reduction rate. Water temperature, TOC and DOC in the water and hydraulic residence time showed negative correlations with N2O emissions. Shallow off-stream CWs such as Rampillon may have good nitrate removal capacity with low N2O emissions.

14.
Sci Total Environ ; 764: 142865, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097262

RESUMO

This review provides focused insights into the contamination status, sources, and ecological risks associated with multiple classes of antibiotics in surface water from the East and Southeast Asia based on publications over the period 2007 to 2020. Antibiotics are ubiquitous in surface water of these countries with concentrations ranging from <1 ng/L to hundreds µg/L and median values from 10 to 100 ng/L. Wider ranges and higher maximum concentrations of certain antibiotics were found in surface water of the East Asian countries like China and South Korea than in the Southeast Asian nations. Environmental behavior and fate of antibiotics in surface water is discussed. The reviewed occurrence of antibiotics in their sources suggests that effluent from wastewater treatment plants, wastewater from aquaculture and livestock production activities, and untreated urban sewage are principal sources of antibiotics in surface water. Ecological risks associated with antibiotic residues were estimated for aquatic organisms and the prevalence of antibiotic resistance genes and antibiotic-resistant bacteria were reviewed. Such findings underline the need for synergistic efforts from scientists, engineers, policy makers, government managers, entrepreneurs, and communities to manage and reduce the burden of antibiotics and antibiotic resistance in water bodies of East and Southeast Asian countries.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Sudeste Asiático , China , Monitoramento Ambiental , Ásia Oriental , República da Coreia , Águas Residuárias , Água , Poluentes Químicos da Água/análise
15.
J Environ Qual ; 39(2): 449-59, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20176818

RESUMO

To investigate bottom sediment denitrification at the scale of the Seine drainage network, a semi-potential denitrification assay was used in which river sediments (and riparian soils) were incubated for a few hours under anaerobic conditions with non limiting nitrate concentrations. This method allowed the nitrous oxide (N(2)O) concentration in the headspace, as well as the nitrate, nitrite, and ammonium concentrations to be determined during incubation. The rates at which nitrate decreased and N(2)O increased were then used to assess the potential denitrification activity and associated N(2)O production in the Seine River Basin. We observed a longitudinal pattern characterized by a significant increase of the potential rate of denitrification from upstream sectors to large downstream rivers (orders 7-8), from approximately 3.3 to 9.1 microg NO(3)(-)-N g(-1) h(-1), respectively, while the N(2)O production rates was the highest both in headwaters and in large order rivers (0.14 and 0.09 N(2)O-N g(-1) h(-1), respectively) and significantly lower in the intermediate sectors (0.01 and 0.03 N(2)O-N g(-1) h(-1)). Consequently, the ratio N(2)O production:NO(3) reduction was found to reach 5% in headstreams, whereas it averaged 1.2% in the rest of the drainage network, an intermediate percentage being found for the riparian soils. Finally, the ignition loss of sediments, together with other redundant variables (particulate organic carbon content: g C 100 g(-1) dry weight [dw], moisture: g water 100 g(-1) dw, sediment size <50 mum: g material size <50 mum 100 g(-1) dw) were found to control these activities. However, the biodegradability of organic matter must be measured to better understand the factor controlling denitrification and its associated N(2)O production.


Assuntos
Sedimentos Geológicos/análise , Nitratos/metabolismo , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Rios/química , Monitoramento Ambiental , França , Nitratos/análise , Óxido Nitroso/análise
16.
Water Res ; 43(6): 1740-54, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19232666

RESUMO

An understanding of the ecological functioning of an aquatic continuum on a multi-regional scale relies on the ability to collect suitable descriptive information. Here, the deterministic Seneque/Riverstrahler model, linking biogeochemistry with the constraints set by geomorphology and anthropogenic activities, was fully implemented to study the Seine, Somme, and Scheldt Rivers. Reasonable agreement was found between calculated and observed nutrient fluxes for both seasonal and inter-annual variations along the networks. Nutrient budgets underline: i) a clear partition of diffuse and point sources with respect to the specific activities of the watersheds, ii) the importance of riparian retention, responsible for 25-50% of nitrogen retention, iii) the role played by benthic processes, resulting in the retention of up to 45% of the phosphorus and 35% of the silica entering the river systems. Nutrient ratios confirmed that fluxes to the Eastern Southern Bight of the North Sea are imbalanced, supporting the potential for undesirable algal blooms.


Assuntos
Ecossistema , Água Doce/análise , Rios , Bélgica , Eutrofização , França , Humanos , Modelos Biológicos , Nitrogênio/análise , Fósforo/análise , Densidade Demográfica , Estações do Ano , Dióxido de Silício/análise , Árvores , População Urbana , Poluição da Água
17.
Sci Total Environ ; 660: 1486-1501, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743941

RESUMO

France was a traditionally agricultural country until the first half of the 20th century. Today, it is the first European cereal producer, with cereal crops accounting for 40% of the agricultural surface area used, and is also a major country for livestock breeding with 25% of the European cattle livestock. This major socioecological transition, with rapid intensification and specialisation in an open global market, has been accompanied by deep environmental changes. To explore the changes in agricultural GHG emissions over the long term (1852-2014), we analysed the emission factors of N2O from field experiments covering major land uses, in a gradient of fertilisation and within a range of temperature and rainfall, and used CH4 emission coefficients for livestock categories, in terms of enteric and manure management, considering the historical changes in animal excretion rates. We also estimated indirect CO2 emissions, rarely accounted for in agricultural emissions, using coefficients found in the literature for the dominant energy consumption items (fertiliser production, field work and machinery, and feed import). From GHG emissions of ~30,000 ktons CO2 Eq yr-1 in 1852, reaching 54,000 ktons CO2 Eq yr-1 in 1955, emissions more than doubled during the 'Glorious thirties' (1950-1980), and peaked around 120,000 ktons CO2 Eq yr-1 in the early 2000s. For the 2010-2014 period, French agriculture GHG emissions stabilised at ~114,000 ktons CO2 Eq yr-1, distributed into 49% methane (CH4), 22% carbon dioxide (CO2) and 29% nitrous oxide (N2O). A regional approach through 33 regions in France shows a diversity of agriculture reflecting the hydro-ecoregion distribution and the agricultural specialisation of local areas. Exploring contrasting scenarios at the 2040 horizon suggests that only deep changes in the structure of the agro-food system would double the reduction of GHG emissions by the agricultural sector.


Assuntos
Agricultura/métodos , Grão Comestível , Poluição Ambiental/análise , Gases de Efeito Estufa/análise , Gado , Animais , Dióxido de Carbono/análise , Fertilizantes , França , Metano/análise , Chuva , Temperatura
18.
Bioresour Technol ; 99(7): 2200-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17604159

RESUMO

Batch experiments were made to better understand the mechanisms of N2O emissions from activated sludge in denitrifying conditions found in urban WWTPs, i.e. under anoxic and low oxygenation conditions. The results showed that in completely anoxic conditions, denitrification, related to a periplasmic nitrate reductase activity, is the major producer of N2O (100% of the N2O production), whereas the nitrate ammonifying activity is not significant. In a gradient of low oxygenation, the highest N2O emissions (49.7+/-3.8 microg N2O-N/g SS/h on average) occurred at a dissolved-oxygen concentration of around 0.3mg O2/L. Below 0.3mg O2/L, heterotrophic denitrification appeared to be the major process responsible for the N2O emission (100% at zero oxygenation). From 0.4 to 1.1mg O2/L, N2O emissions were due to two processes: (i) heterotrophic denitrification that represented about 40% of the N2O production, and (ii) autotrophic nitrifier denitrification that accounted for about 60%. The N2O emissions from activated sludge represented on average 0.4% of reduced NO3(-) in anoxic conditions. The N2O emissions associated with denitrification of entire nitrogen load would amount to 155 T N2O-N/year, if all the Paris wastewater was treated by a process using activated sludge.


Assuntos
Resíduos Industriais , Óxido Nitroso/química , Oxigênio/química , Esgotos/química , Poluentes Químicos da Água , Reatores Biológicos
19.
Mar Pollut Bull ; 57(1-5): 187-201, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18061210

RESUMO

The scientific teams from the interdisciplinary Seine-Aval (SA) research program and the SA's operational pole, GIPSA (Groupement d'Intérêt Public Seine-Aval) have worked together to create a report card designed to help the Estuary Council (Conseil de l'Estuaire) revitalize its original functions: maintaining functional links between the various estuarine ecosystems, comprehending and managing the estuary's natural habitats and biological populations, and monitoring and improving the physical-chemical quality of the estuarine waters. The report card will be able to synthesize the information obtained from several system performance variables and available operational indicators. This approach, intended to guide the estuary managers, is the oeuvre of several scientific teams; it is particularly important in the context of the Water Framework Directive because it facilitates the elaboration of a group of relevant indicators, which can then be used as operational tools. A report card will provide decision-makers (e.g., political authorities; national, regional and local institutions and industries) with the key indicators for evaluating the system and predicting changes in terms of selected objectives, such as the preservation and restoration of the estuary's environmental functionalities. The final objective of the research is to choose among the available indicators to approximate potential ecological risks. Integrating the socio-economical data will perhaps lead to setting risk acceptability thresholds for the different uses of the Seine estuary. In the end, collaboration between the scientists, the managers, and the GIPSA operational pole will be essential to produce a viable report card about the environmental status of the Seine estuary. To illustrate the research now under way, this article presents the results for three actions undertaken, concerning: (i) physical indicators (i.e., an inventory of the estuary first as a whole, and then section by section); (ii) benthic indicators (i.e., seven indices which show a moderate EcoQ for the lower part of the estuary); and (iii) a eutrophication indicator (i.e., an indicator for coastal eutrophication potential (ICEP), which helps to limit the nutrient fluxes (N or P) that exceed the silica flux delivered by the Seine network, based on the Redfield ratios for algal propagation).


Assuntos
Meio Ambiente , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Rios , Eutrofização , Sedimentos Geológicos , Água do Mar
20.
Environ Sci Pollut Res Int ; 25(24): 23515-23528, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27613626

RESUMO

The lower Seine River is severely affected by the release of the treated wastewater from the 12 million inhabitants of the Paris agglomeration. Whereas urban effluents were the major source of phosphorus pollution in the late 1980s, the ban on polyphosphates from detergents in 1991 considerably reduced the phosphorus (P) loading to the Seine River and was followed in 2000 by the implementation of phosphorus treatment in the largest wastewater treatment plant of Paris conurbation (Seine Aval). Phosphorus discharged to the rivers from domestic wastewater was reduced by 80 %, significantly decreasing phytoplankton biomass in the large branches of the Seine River. Considering that phosphorus treatment (the use of ferric salts in the P treatment line) might change the adsorption of ortho-phosphates on suspended matter, we experimentally studied again their sorption processes in these new conditions. We found parameters of the Langmuir equation (Pac = 0.003 mgP mgSS-1; Kps = 0.04 mgP L-1) that significantly differed from the values previously considered for modeling of the whole Seine, especially for Kps (Pac = 0.0055 mgP mgSS-1; Kps = 0.7 mgP L-1). Using the Seneque-Rivertrahler modeling approach, we showed a better agreement between P observations and simulations with the new P sorption parameters, with slight effect on the simulation of the development of phytoplankton in the water column.


Assuntos
Fósforo/análise , Fitoplâncton/crescimento & desenvolvimento , Rios , Águas Residuárias/química , Biomassa , Monitoramento Ambiental , Eutrofização , França , Sedimentos Geológicos/química , Modelos Teóricos , Paris , Fosfatos/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa