Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Chem Phys ; 154(21): 214705, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240973

RESUMO

A trace amount of interfacial water is required to initiate hydrosilation reactions of trifunctional organosilanes to form surface assemblies. In recent studies, we have learned that water also has a critical role in directing molecular placement on surfaces because water can react with silicon to provide oxygenated sites for surface binding. Consequently, the wettability nature of substrates influences the placement and density of organosilane films formed by vapor-phase reactions. Nanopatterning protocols were designed using vapor-phase organosilanes and colloidal lithography to compare the wettability differences of hydrophilic mica(0001) compared to relatively hydrophobic Si(100) as a strategy for tracking the location of water on surfaces. The competition between hydrophobic and hydrophilic domains for the adsorption and coalescence of water condensed from vapor can be mapped indirectly by mapping the organosilanes, which bind to water at the solid interface, using atomic force microscopy. Trifunctional octadecyltrichlorosilane (OTS) was used as a marker molecule to map out the areas of the surface where water was deposited. The effect of systematic changes in film thickness and surface coverage of OTS was evaluated at the vapor/solid interface by adding an incremental amount of water to sealed reaction vessels to wet the surface and assessing the outcome after reaction with vapor-phase trichlorosilane. Reactive molecular dynamics simulations of the silicon-water vapor interface combined with electronic structure calculations of oxygenated silicon clusters with methyltrichlorosilane provided insight of the mechanism for surface binding, toward understanding the nature of the interface and wettability factors, which influence the association and placement of silane molecules on surfaces.

2.
Langmuir ; 33(5): 1132-1138, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28081363

RESUMO

Protocols for nanopatterning porphyrins on Au(111) were developed based on immersion particle lithography. Porphyrins with and without a central metal ion, 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin cobalt(II) (CoTPP), were selected for study, which spontaneously formed nanorod geometries depending on concentration parameters. The elongated shapes of the nanorods offers an opportunity for successive distance-dependent conductive probe atomic force microscopy (CP-AFM) measurements along the length of the nanorods. To prepare patterns of TPP and CoTPP nanorods, a mask of silica mesospheres was placed on gold substrates to generate nanoholes within an alkanethiol matrix film. The nanoholes prepared by particle lithography with an immersion step were backfilled with porphyrins by a second immersion step. By controlling the concentration and immersion interval, nanorods of porphyrins were generated with one end of the nanostructure attached to gold within a nanohole. The porphyrin nanorods exhibited slight differences in dimensions at the nanoscale to enable size-dependent measurements of conductive properties. The conductivity along the horizontal direction of the nanorods was evaluated with CP-AFM studies. Changes in conductivity were measured along the long axis of TPP and CoTPP nanorods. The TPP nanorods exhibited conductive profiles of an insulating material, and the CoTPP nanorods exhibited profiles of a semiconductor. The experiments demonstrate the applicability of particle lithography for preparing unique and functional surface platforms of porphyrins to measure distance-dependent conductive properties on gold.


Assuntos
Nanotubos/química , Compostos Organometálicos/química , Porfirinas/química , Ouro/química , Microscopia de Força Atômica , Estrutura Molecular , Tamanho da Partícula , Dióxido de Silício/química , Compostos de Sulfidrila/química , Propriedades de Superfície
3.
Analyst ; 141(5): 1753-60, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26824091

RESUMO

Among the modes of scanning probe microscopy (SPM), force modulation microscopy (FMM) is often used to acquire mechanical properties of samples concurrent with topographic information. The FMM mode is useful for investigations with polymer and organic thin film samples. Qualitative evaluation of the mixed domains of co-polymers or composite films can often be accomplished with high resolution using FMM phase and amplitude images. We have designed and tested a sample stage for FMM constructed of machined polycarbonate. A generic design enables FMM experiments for instrument configurations with a tip-mounted SPM scanner. A piezoactuator within the sample stage was used to drive the sample to vibrate in the z-direction according to selected parameters. To evaluate the FMM sample stage, we tested samples of known composition with nanoscale dimensions for increasingly complex surface morphologies. Excellent resolution was achieved in ambient conditions using the home-constructed sample stage, as revealed for complex surfaces or multi-component samples. Test structures of nanoholes within a film of organosilanes provided the simplest platform with two distinct surface domains. Ring-shaped nanostructures prepared on Si(111) with mixed organosilanes provided three regions for evaluating FMM results. A complex sample consisting of a cyclic gel polymer containing fibril nanostructures was also tested with FMM measurements. Frequency spectra were acquired for sample domains, revealing distinct differences in local mechanical response. We demonstrate a practical approach to construct a sample stage accessory to facilitate z-sample modulation for FMM experiments with tip-mounted SPM scanners.

4.
J Am Chem Soc ; 136(41): 14438-44, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25244537

RESUMO

Visible light photoredox catalysis was combined with immersion particle lithography to prepare polynitrophenylene organic films on Au(111) surfaces, forming a periodic arrangement of nanopores. Surfaces masked with mesospheres were immersed in solutions of p-nitrobenzenediazonium tetrafluoroborate and irradiated with blue LEDs in the presence of the photoredox catalyst Ru(bpy)3(PF6)2 to produce p-nitrophenyl radicals that graft onto gold substrates. Surface masks of silica mesospheres were used to protect small, discrete regions of the Au(111) surface from grafting. Nanopores were formed where the silica mesospheres touched the surface; the mask effectively protected nanoscopic local areas from the photocatalysis grafting reaction. Further reaction of the grafted arenes with aryl radicals resulted in polymerization to form polynitrophenylene structures with thicknesses that were dependent on both the initial concentration of diazonium salt and the duration of irradiation. Photoredox catalysis with visible light provides mild, user-friendly conditions for the reproducible generation of multilayers with thicknesses ranging from 2 to 100 nm. Images acquired with atomic force microscopy (AFM) disclose the film morphology and periodicity of the polymer nanostructures. The exposed sites of the nanopores provide a baseline to enable local measurements of film thickness with AFM. The resulting films of polynitrophenylene punctuated with nanopores provide a robust foundation for further chemical steps. Spatially selective binding of mercaptoundecanoic acid to exposed sites of Au(111) was demonstrated, producing a periodic arrangement of thiol-based nanopatterns within a matrix of polynitrophenylene.

5.
Langmuir ; 30(19): 5466-73, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24788214

RESUMO

An emerging challenge for nanoscale measurements is to capture and quantify the magnitude of structural changes in response to environmental changes. Certain environmental parameters can affect the nanoscale morphology of samples, such as changing the pH, solvent polarity, ionic strength, and temperature. We prepared test platforms of n-octadecyltrichlorosilane ring nanostructures to study surface morphology changes at the nanoscale in selected liquid media compared to dry conditions in air. Particle lithography combined with organosilane vapor deposition was used to fabricate nanostructures of regular dimensions. Multilayer nanostructures of OTS were used as a test platform for scanning probe studies of solvent-responsive properties where the sides of designed ring structures expose a 3D interface for studying the interaction of solvents with molecular side groups. In dry, ambient conditions, nanostructures of OTS were first imaged using contact mode atomic force microscopy (AFM). Next, ethanol or buffer was introduced to the sample cell, and images were acquired using the same probe. We observed substantial changes in the lateral and vertical dimensions of the ring nanostructures in AFM topography frames; the sizes of the rings were observed to swell by tens of nanometers. Even after heat treatment of samples to promote cross-linking, the samples still evidenced swelling in liquid media. This research will have consequences for studies of the properties of nanomaterials, such as solvent-responsive organic films and polymers.

6.
Molecules ; 19(9): 13010-26, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25157466

RESUMO

The solution-phase self-assembly of bidentate 16-[3,5-bis(mercapto-methyl)phenoxy]hexadecanoic acid (BMPHA) on Au(111) was studied using nano-fabrication protocols with scanning probe nanolithography and immersion particle lithography. Molecularly thin films of BMPHA prepared by surface self-assembly have potential application as spatially selective layers in sensor designs. Either monolayer or bilayer films of BMPHA can be formed under ambient conditions, depending on the parameters of concentration and immersion intervals. Experiments with scanning probe-based lithography (nanoshaving and nanografting) were applied to measure the thickness of BMPHA films. The thickness of a monolayer and bilayer film of BMPHA on Au(111) were measured in situ with atomic force microscopy using n-octadecanethiol as an internal reference. Scanning probe-based nanofabrication provides a way to insert nanopatterns of a reference molecule of known dimensions within a matrix film of unknown thickness to enable a direct comparison of heights and surface morphology. Immersion particle lithography was used to prepare a periodic arrangement of nanoholes within films of BMPHA. The nanoholes could be backfilled by immersion in a SAM solution to produce nanodots of n-octadecanethiol surrounded by a film of BMPHA. Test platforms prepared by immersion particle lithography enables control of the dimensions of surface sites to construct supramolecular assemblies.


Assuntos
Difosfatos/química , Nanotecnologia/métodos , Ácido Palmítico/química , Ouro/química , Microscopia de Força Atômica , Microscopia de Varredura por Sonda , Ácido Palmítico/síntese química , Soluções/química , Propriedades de Superfície
7.
ACS Omega ; 9(2): 2629-2638, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250429

RESUMO

Supramolecular Cu(II) complexes were prepared from two trifunctional ß-diketone ligands. The ligands (CH3Si(phacH)3 and CH3Si(phprH)3, represented by LH3) contain three aryl-ß-diketone moieties joined by an organosilicon group. The complexes have the empirical formula Cu3L2, as expected for combinations of Cu2+ and L3-. Several metal-organic polyhedra (MOPs) [Cu3L2]n are possible (n = 1-10); a dodecahedron (Cu30L20; n = 10; estimated diameter of ca. 5 nm) should be the most stable because its internal bond angles would come closest to ideal values. Atomic force microscopy (AFM), performed on samples deposited from solution onto mica substrates, revealed a distribution of sample heights in the 0.5-3.0 nm range. The most commonly observed heights were 0.5-1.5 nm, corresponding to the smallest possible molecules (Cu3L2, i.e., n = 1). Some molecular cubes (Cu12L8; ca. 2.5 nm) or larger molecules or aggregates may be present as well. Equilibrium analytical ultracentrifugation (AUC) was also used to probe the compounds. A previously reported reference compound, the molecular square Cu4(m-pbhx)4 (M = 2241 g mol-1), behaved well in AUC experiments in four nonpolar organic solvents. AUC data for the new tris(ß-diketonate) MOPs [Cu3L2]n in toluene and fluorobenzene did not agree well with the theoretical results for a single solute. The data were fit well by a two-solute model, but these results were not consistent in the two solvents used, and some run-to-run variability was noted even in the same solvent. Also, the calculated molecular weights differed significantly from those expected for [Cu3L2]n ([Cu3(CH3Si(phac)3)2]n, multiples of 1322 g mol-1; or [Cu3(CH3Si(phpr)3)2]n, multiples of 1490 g mol-1).

8.
Langmuir ; 29(22): 6529-36, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23642013

RESUMO

The self-polymerization of 4-chloromethylphenyltrichlorosilane (CMPS) was studied within spatially confined nanoholes on Si(111) using atomic force microscopy (AFM). Surface platforms of nanoholes were fabricated within a film of octadecyltrichlorosilane using immersion particle lithography. A heating step was developed to temporarily solder the silica mesospheres to the surface, to enable sustained immersion of mesoparticle masks in solvent solutions for the particle lithography protocol. Substrates with a film of mesospheres were heated briefly to anneal the particles to the surface, followed by a rinsing step with sonication to remove the silica beads to generate nanopores within an octadecyltrichlorosilane (OTS) film. Nanopatterned surface templates were immersed in CMPS solutions and removed at different time points to monitor the successive growth of nanostructures over time. Analysis of AFM images after progressive exposure of the nanoholes to solutions of CMPS provided quantitative information and details of the surface self-assembly reaction. Pillar nanostructures of CMPS with different heights and diameters were produced exclusively within the exposed areas of the substrates. Throughout the reaction, the surrounding matrix of OTS-passivated substrate did not evidence growth of CMPS; the surface assembly of CMPS was strictly confined within the nanopores. The diameter of the CMPS nanostructures grew to match the initial sizes of the confined areas of Si(111) but did not spread out beyond the edges of the OTS nanocontainers. However, the vertical growth of columns was affected by the initial size of the sites of uncovered substrate, evidencing a direct correspondence; larger sites produced taller structures, and correspondingly the growth of shorter structures was observed within smaller nanoholes. The heights of CMPS nanostructures indicate that multilayers were formed, with taller columns generated after longer immersion times. These experiments offer intriguing possibilities for using particle lithography as a general approach for nanoscale studies of molecular self-assembly.

9.
Anal Bioanal Chem ; 405(6): 1985-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23239182

RESUMO

The immobilization of proteins on nanopatterned surfaces was investigated using in situ atomic force microscopy (AFM) and ex situ infrared reflectance-absorption spectroscopy (IRAS). The AFM-based lithography technique of nanografting provided control of the size, geometry, and spatial placement of nanopatterns within self-assembled monolayers (SAMs). Square nanopatterns of carboxylate-terminated SAMs were inscribed within methyl-terminated octadecanethiolate SAMs and activated using carbodiimide/succinimide coupling chemistry. Staphylococcal protein A was immobilized on the activated nanopatterns before exposure to rabbit immunoglobulin G. In situ AFM was used to monitor changes in the topography and friction of the nanopatterns in solution upon protein immobilization. Complementary studies with ex situ IRAS confirmed the surface chemistry that occurred during the steps of SAM activation and subsequent protein immobilization on unpatterned samples. Since carbodiimide/succinimide coupling chemistry can be used for surface attachment of different biomolecules, this protocol shows promise for development of other aqueous-based studies for nanopatterned protein immobilization.


Assuntos
Ácidos Carboxílicos/química , Proteínas Imobilizadas/química , Nanoestruturas/química , Proteína Estafilocócica A/química , Animais , Reagentes de Ligações Cruzadas/química , Imunoglobulina G/química , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Coelhos , Análise Espectral , Staphylococcus aureus/química , Propriedades de Superfície
10.
Langmuir ; 27(21): 13269-75, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21928785

RESUMO

Periodic arrays of organosilane nanostructures were prepared with particle lithography to define sites for selective adsorption of functionalized gold nanoparticles. Essentially, the approach for nanoparticle lithography consists of procedures with two masks. First, latex mesospheres were used as a surface mask for deposition of an organosilane vapor, to produce an array of holes within a covalently bonded, organic thin film. The latex particles were readily removed with solvent rinses to expose discrete patterns of nanosized holes of uncovered substrate. The nanostructured film of organosilanes was then used as a surface mask for a second patterning step, with immersion in a solution of functionalized nanoparticles. Patterned substrates were fully submerged in a solution of surface-active gold nanoparticles coated with 3-mercaptopropyltrimethoxysilane. Regularly shaped, nanoscopic areas of bare substrate produced by removal of the latex mask provided sites to bind silanol-terminated gold nanoparticles, and the methyl-terminated areas of the organosilane film served as an effective resist, preventing nonspecific adsorption on masked areas. Characterizations with atomic force microscopy demonstrate the steps for lithography with organosilanes and functionalized nanoparticles. Patterning was accomplished for both silicon and glass substrates, to generate nanostructures with periodicities of 200-300 nm that match the diameters of the latex mesospheres of the surface masks. Nanoparticles were shown to bind selectively to uncovered, exposed areas of the substrate and did not attach to the methyl-terminal groups of the organosilane mask. Billions of well-defined nanostructures of nanoparticles can be generated using this high-throughput approach of particle lithography, with exquisite control of surface density and periodicity at the nanoscale.

11.
ACS Omega ; 6(40): 25860-25875, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34660949

RESUMO

Information of the chemical, mechanical, and electrical properties of materials can be obtained using force volume mapping (FVM), a measurement mode of scanning probe microscopy (SPM). Protocols have been developed with FVM for a broad range of materials, including polymers, organic films, inorganic materials, and biological samples. Multiple force measurements are acquired with the FVM mode within a defined 3D volume of the sample to map interactions (i.e., chemical, electrical, or physical) between the probe and the sample. Forces of adhesion, elasticity, stiffness, deformation, chemical binding interactions, viscoelasticity, and electrical properties have all been mapped at the nanoscale with FVM. Subsequently, force maps can be correlated with features of topographic images for identifying certain chemical groups presented at a sample interface. The SPM tip can be coated to investigate-specific reactions; for example, biological interactions can be probed when the tip is coated with biomolecules such as for recognition of ligand-receptor pairs or antigen-antibody interactions. This review highlights the versatility and diverse measurement protocols that have emerged for studies applying FVM for the analysis of material properties at the nanoscale.

12.
Anal Chem ; 82(10): 3997-4005, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20420412

RESUMO

In this work, a zwitterionic molecular micelle, poly-epsilon-sodium-undecanoyl lysinate (poly-epsilon-SUK), was synthesized and employed as a coating in open tubular capillary electrochromatography (OT-CEC) for protein separation. The zwitterionic poly-epsilon-SUK containing both carboxylic acid and amine groups can be either protonated or deprotonated depending on the pH of the background electrolyte; therefore, either an overall positively or negatively charged coating can be achieved. This zwitterionic coating allows protein separations in either normal or reverse polarity mode depending on the pH of the background electrolyte. The protein mixtures contained four basic proteins (lysozyme, cytochrome c, alpha-chymotrypsinogen A, and ribonuclease A) and six acidic proteins (myoglobin, deoxyribonuclease I, beta-lactoglobulin A, beta-lactoglobulin B, alpha-lactalbumin, and albumin). Protein separations were optimized specifically for acidic (reverse mode) and basic (normal mode) pH values. Varying the polymer thickness by changing the polymer and salt concentration had a great influence on protein resolution, while nearly all peaks were also baseline resolved in both modes using the optimized poly-epsilon-SUK coating concentration of 0.4% (w/v). Proteins in human sera were separated under optimized acidic and basic conditions in order to demonstrate the general utility of this coating. Nanoscale characterizations of the poly-epsilon-SUK micellar coatings on silicon surfaces were accomplished using atomic force microscopy (AFM) to gain insight into the morphology and thickness of the zwitterionic coating. The thickness of the polymer coating ranged from 0.9 to 2.4 nm based on local measurements using nanoshaving, an AFM-based method of nanolithography.


Assuntos
Eletrocromatografia Capilar/métodos , Cromatografia Capilar Eletrocinética Micelar/métodos , Lactalbumina/isolamento & purificação , Lisina/química , Ácidos , Concentração de Íons de Hidrogênio , Lactoglobulinas/isolamento & purificação , Micelas
13.
Langmuir ; 26(18): 14671-9, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20799694

RESUMO

Advanced surface characterization techniques were used to systematically investigate either the corrosion or passivation of copper after immersion in water as impacted by pH and orthophosphate water chemistries. Atomic force microscopy, depth profiling with time-of-flight secondary ion mass spectrometry, and X-ray diffraction were used to evaluate changes in surface chemistry of copper surfaces resulting from various chemical treatments. Nanoscale differences in surface morphology are clearly evident after 6 and 24 h immersion in water samples. Orthophosphate and pH dramatically influence the evolution and progression of changes during surface corrosion. For example, in the absence of orthophosphate the surface of copper exposed to water at pH 6 had formed relatively large cubic crystals on the surface up to 400 nm in height. In the presence of orthophosphate, the morphology and growth rate of corrosion byproduct changed dramatically, and the formation of identifiable crystals diminished. These investigations provide insight into the mechanisms of surface passivation and the evolution of nanoscale mineral deposits on surfaces at very early stages of the corrosion of copper surfaces in water.


Assuntos
Cobre/química , Nanotecnologia/métodos , Fosfatos/química , Água/química , Corrosão , Concentração de Íons de Hidrogênio , Imersão , Espectrometria de Massas , Microscopia de Força Atômica , Minerais/química , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
14.
Langmuir ; 26(5): 3040-9, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20131892

RESUMO

Molecules of n-alkanethiols with methyl head groups typically form well-ordered monolayers during solution self-assembly for a wide range of experimental conditions. However, we have consistently observed that, for either carboxylic acid or thiol-terminated n-alkanethiols, under certain conditions nanografted patterns are generated with a thickness corresponding precisely to a double layer. To investigate the role of head groups for solution self-assembly, designed patterns of omega-functionalized n-alkanethiols were nanografted with systematic changes in concentration. Nanografting is an in situ approach for writing patterns of thiolated molecules on gold surfaces by scanning with an AFM tip under high force, accomplished in dilute solutions of desired ink molecules. As the tip is scanned across the surface of a self-assembled monolayer under force, the matrix molecules are displaced from the surface and are immediately replaced with fresh molecules from solution to generate nanopatterns. In this report, side-by-side comparison of nanografted patterns is achieved for different matrix molecules using AFM images. The chain length and head groups (i.e., carboxyl, hydroxyl, methyl, thiol) were varied for the nanopatterns and matrix monolayers. Interactions such as head-to-head dimerization affect the vertical self-assembly of omega-functionalized n-alkanethiol molecules within nanografted patterns. At certain threshold concentrations, double layers were observed to form when nanografting with head groups of carboxylic acid and dithiols, whereas single layers were generated exclusively for nanografted patterns with methyl and hydroxyl groups, regardless of changes in concentration.


Assuntos
Alcanos/química , Microscopia de Força Atômica , Nanotecnologia/métodos , Compostos de Sulfidrila/química , Ácidos Carboxílicos/química , Ouro/química , Hidróxidos/química , Ácidos Palmíticos/química , Padrões de Referência , Solventes/química , Propriedades de Superfície , Água/química
15.
Anal Chem ; 81(4): 1699-706, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19159329

RESUMO

Frequency-dependent changes for phase and amplitude images are demonstrated with test platforms of organosilane ring patterns, using force modulation atomic force microscopy (FM-AFM) with an alternate instrument configuration. The imaging setup using indirect magnetic modulation (IMM) is based on indirect oscillation of soft, nonmagnetic cantilevers, with spring constants <1 N m(-1). The tip is driven to vibrate by the motion of a tip holder assembly which contains ferromagnetic materials. The entire tip assembly is induced to vibrate with the flux of an external ac electromagnetic field, supplied by a wire coil solenoid placed underneath the sample plate. With the use of IMM, dynamic parameters of the driving frequencies and amplitude of the tip motion can be optimized to sensitively map the elastic response of samples. An advantage of this instrument setup is that a magnetic coating is not required to drive the periodic oscillation of the tip. The instrument configuration for IMM may not be practical for intermittent imaging modes, which often work best with stiff cantilevers. However, indirect actuation provides an effective approach for imaging with low force setpoints and is well-suited for dynamic AFM modes using continuous contact imaging.


Assuntos
Magnetismo , Microscopia de Força Atômica/métodos , Campos Eletromagnéticos , Fenômenos Mecânicos , Compostos de Organossilício/química , Polietilenoglicóis/química , Reprodutibilidade dos Testes , Silanos/química , Propriedades de Superfície , Vibração
16.
Anal Chem ; 81(12): 4792-802, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19453164

RESUMO

A new imaging strategy using atomic force microscopy (AFM) is demonstrated for mapping magnetic domains at size regimes below 100 nm. The AFM-based imaging mode is referred to as magnetic sample modulation (MSM), since the flux of an AC-generated electromagnetic field is used to induce physical movement of magnetic nanomaterials on surfaces during imaging. The AFM is operated in contact mode using a soft, nonmagnetic tip to detect the physical motion of the sample. By slowly scanning an AFM probe across a vibrating area of the sample, the frequency and amplitude of vibration induced by the magnetic field is tracked by changes in tip deflection. Thus, the AFM tip serves as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. Essentially, MSM is a hybrid of contact mode AFM combined with selective modulation of magnetic domains. The positional feedback loop for MSM imaging is the same as that used for force modulation and contact mode AFM; however, the vibration of the sample is analyzed using channels of a lock-in amplifier. The investigations are facilitated by nanofabrication methods combining particle lithography with organic vapor deposition and electroless deposition of iron oxide, to prepare designed test platforms of magnetic materials at nanometer length scales. Custom test platforms furnished suitable surfaces for MSM characterizations at the level of individual metal nanostructures.


Assuntos
Compostos Férricos/análise , Magnetismo , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Silanos/química , Microscopia de Força Atômica/instrumentação , Nanoestruturas/ultraestrutura , Propriedades de Superfície , Vibração
17.
Anal Bioanal Chem ; 394(1): 215-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19205674

RESUMO

Individual ferritin molecules can be sensitively detected using magnetic sample modulation (MSM) combined with contact mode atomic force microscopy (AFM). To generate an oscillating magnetic field, an alternating current (AC) was applied to a solenoid placed within the base of the AFM sample stage. When a modulated electromagnetic field is applied to samples, ferromagnetic and paramagnetic nanomaterials are induced to vibrate. The flux of the AC electromagnetic field causes the ferritin samples to vibrate with corresponding rhythm and periodicity of the applied field. This motion can be detected and mapped using contact mode AFM with a soft, nonmagnetic cantilever. Changes in the phase and amplitude of the periodic motion of the sample are sensed by the tip to selectively map vibrating magnetic nanomaterials. Particle lithography was used to create nanopatterned test platforms of ferritin for MSM measurements. Regularly spaced structures of proteins provide precise reproducible dimensions for multiple successive surface measurements at dimensions of tens of nanometers.


Assuntos
Ferritinas/química , Magnetismo , Microscopia de Força Atômica/métodos , Tamanho da Partícula , Propriedades de Superfície
18.
ACS Omega ; 4(2): 2565-2576, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459493

RESUMO

The surface assembly of 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) using silicon tetrachloride as a coupling agent was investigated using atomic force microscopy (AFM). Nanopatterned films of Si-OEP were prepared by protocols of colloidal lithography to evaluate the morphology, thickness, and molecular orientation for samples prepared on Si(111). The natural self-stacking of porphyrins can pose a challenge for molecular patterning. When making films on surfaces, porphyrins will self-associate to form co-planar configurations of random stacks of molecules. There is a tendency for the flat molecules to orient spontaneously in a side-on arrangement that is mediated by physisorption to the substrate as well as by π-π interactions between macrocycles to form a layered arrangement of packed molecules, analogous to a stack of coins. When silicon tetrachloride is introduced to the reaction vessel, the coupling between the surface and porphyrins is mediated through covalent Si-O bonding. For these studies, surface structures of Si-OEP were formed that are connected with a Si-O-Si motif to a silicon atom coordinated to the center of the porphyrin macrocycles. Protocols of colloidal lithography were used as a tool to prepare surface structures and films of Si-OEP to facilitate surface characterizations. Conceptually, by arranging the macrocycles of porphyrins with defined orientation, local AFM surface measurements can be enabled to help address mechanistic questions about how molecules self-assemble and bind to substrates.

19.
Scanning ; 30(2): 123-36, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18200549

RESUMO

Nanografting is a high-precision approach for scanning probe lithography, which provides unique advantages and capabilities for rapidly writing arrays of nanopatterns of thiol self-assembled monolayers (SAMs). Nanografting is accomplished by force- induced displacement of molecules of a matrix SAM, followed immediately by the self-assembly of n-alkanethiol ink molecules from solution. The feedback loop used to control the atomic force microscope tip position and displacement enables exquisite control of forces applied to the surface, ranging from pico to nanonewtons. To achieve high-resolution writing at the nanoscale, the writing speed, direction, and applied force need to be optimized. There are strategies for programing the tip translation, which will improve the uniformity, alignment, and geometries of nanopatterns written using open-loop feedback control. This article addresses the mechanics of automated nanografting and demonstrates results for various writing strategies when nanografting patterns of n-alkanethiol SAMs.

20.
Beilstein J Nanotechnol ; 9: 1211-1219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765798

RESUMO

Nanostructures of 4-(chloromethyl)phenyltrichlorosilane (CMPS) were used as a foundation to attach and grow heterostructures of porphyrins and organosilanes. A protocol was developed with particle lithography using steps of immersion in organosilane solutions to selectively passivate the surface of Si(111) with octadecyltrichlorosilane (OTS). A methyl-terminated matrix was chosen to direct the growth of CMPS nanostructures to fill the uncovered sites of Si(111) to enable spatial confinement of the surface reaction. Silica spheres with a diameter of 500 nm were used as a surface mask to prepare nanoscopic holes within the OTS matrix film. Next, the samples were immersed in solutions of CMPS dissolved in toluene or bicyclohexane. Nanostructures of CMPS formed within the nanoholes, to furnish spatially selective sites for binding porphyrins. The samples were then characterized with AFM to evaluate the height and morphology of the CMPS nanostructures that had formed within the nanoholes of OTS. The samples were then refluxed in a porphyrin solution for selective binding to produce heterostructures. The attachment of porphyrins was evidenced by increases in the height and width of the CMPS nanopatterns. The measurements of size indicate that multiple layers of porphyrins were added. Through each step of the surface reaction the surrounding matrix of OTS showed minimal areas of nonspecific adsorption. The AFM studies provide insight into the mechanism of the self-polymerization of CMPS as a platform for constructing porphyrin heterostructures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa