Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biochem J ; 479(19): 2063-2086, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240066

RESUMO

Previously, we discovered that deletion of c-Rel in the Eµ-Myc mouse model of lymphoma results in earlier onset of disease, a finding that contrasted with the expected function of this NF-κB subunit in B-cell malignancies. Here we report that Eµ-Myc/cRel-/- cells have an unexpected and major defect in the CHK1 pathway. Total and phospho proteomic analysis revealed that Eµ-Myc/cRel-/- lymphomas highly resemble wild-type (WT) Eµ-Myc lymphomas treated with an acute dose of the CHK1 inhibitor (CHK1i) CCT244747. Further analysis demonstrated that this is a consequence of Eµ-Myc/cRel-/- lymphomas having lost expression of CHK1 protein itself, an effect that also results in resistance to CCT244747 treatment in vivo. Similar down-regulation of CHK1 protein levels was also seen in CHK1i resistant U2OS osteosarcoma and Huh7 hepatocellular carcinoma cells. Further investigation revealed that the deubiquitinase USP1 regulates CHK1 proteolytic degradation and that its down-regulation in our model systems is responsible, at least in part, for these effects. We demonstrate that treating WT Eµ-Myc lymphoma cells with the USP1 inhibitor ML323 was highly effective at reducing tumour burden in vivo. Targeting USP1 activity may thus be an alternative therapeutic strategy in MYC-driven tumours.


Assuntos
Linfoma , Proteínas Proto-Oncogênicas c-myc , Aminopiridinas , Animais , Enzimas Desubiquitinantes , Linfoma/metabolismo , Linfoma/patologia , Camundongos , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirimidinas
2.
Metabolomics ; 16(4): 50, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32285223

RESUMO

INTRODUCTION: To generate biomarkers of target engagement or predictive response for multi-target drugs is challenging. One such compound is the multi-AGC kinase inhibitor AT13148. Metabolic signatures of selective signal transduction inhibitors identified in preclinical models have previously been confirmed in early clinical studies. This study explores whether metabolic signatures could be used as biomarkers for the multi-AGC kinase inhibitor AT13148. OBJECTIVES: To identify metabolomic changes of biomarkers of multi-AGC kinase inhibitor AT13148 in cells, xenograft / mouse models and in patients in a Phase I clinical study. METHODS: HILIC LC-MS/MS methods and Biocrates AbsoluteIDQ™ p180 kit were used for targeted metabolomics; followed by multivariate data analysis in SIMCA and statistical analysis in Graphpad. Metaboanalyst and String were used for network analysis. RESULTS: BT474 and PC3 cells treated with AT13148 affected metabolites which are in a gene protein metabolite network associated with Nitric oxide synthases (NOS). In mice bearing the human tumour xenografts BT474 and PC3, AT13148 treatment did not produce a common robust tumour specific metabolite change. However, AT13148 treatment of non-tumour bearing mice revealed 45 metabolites that were different from non-treated mice. These changes were also observed in patients at doses where biomarker modulation was observed. Further network analysis of these metabolites indicated enrichment for genes associated with the NOS pathway. The impact of AT13148 on the metabolite changes and the involvement of NOS-AT13148- Asymmetric dimethylarginine (ADMA) interaction were consistent with hypotension observed in patients in higher dose cohorts (160-300 mg). CONCLUSION: AT13148 affects metabolites associated with NOS in cells, mice and patients which is consistent with the clinical dose-limiting hypotension.


Assuntos
2-Hidroxifenetilamina/análogos & derivados , Antineoplásicos/metabolismo , Metabolômica , Óxido Nítrico Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/metabolismo , 2-Hidroxifenetilamina/administração & dosagem , 2-Hidroxifenetilamina/metabolismo , 2-Hidroxifenetilamina/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Glicogênio Sintase Quinase 3 beta/sangue , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Óxido Nítrico Sintase/metabolismo , Células PC-3 , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/administração & dosagem , Pirazóis/farmacologia
4.
Chem Sci ; 14(35): 9517-9525, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712023

RESUMO

The chemistry of aptamers is largely limited to natural nucleotides, and although modifications of nucleic acids can enhance target aptamer affinity, there has not yet been a technology for selecting the right modifications in the right locations out of the vast number of possibilities, because enzymatic amplification does not transmit sequence-specific modification information. Here we show the first method for the selection of specific nucleoside modifications that increase aptamer binding efficacy, using the oncoprotein EGFR as a model target. Using fluorescence-activated bead sorting (FABS), we have successfully selected optimized aptamers from a library of >65 000 variations. Hits were identified by tandem mass spectrometry and validated by using an EGFR binding assay and computational docking studies. Our results provide proof of concept for this novel strategy for the selection of chemically optimised aptamers and offer a new method for rapidly synthesising and screening large aptamer libraries to accelerate diagnostic and drug discovery.

5.
Eur J Pharmacol ; 938: 175445, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36473593

RESUMO

In this study, the anti-obesity effects of 5,7,3',4',5-pentamethoxyflavone (PMF) and 6,2',4'-trimethoxyflavone (TMF) were evaluated through two distinct mechanisms of action: inhibition of crude porcine pancreatic lipase (PL), and inhibition of adipogenesis in 3T3-L1 pre-adipocytes. Both flavones show dose dependent, competitive inhibition of PL activity. Molecular docking studies revealed binding of the flavones to the active site of PL. In 3T3-L1 adipocytes, both flavones reduced the accumulation of lipids and triglycerides. PMF and TMF also lowered the expression of adipogenic and lipogenic genes. They both reduced the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein α and ß (C/EBP α and ß), sterol regulatory element-binding protein 1 (SREBF 1), fatty acid synthase (FASN), adipocyte binding protein 2 (aP2), and leptin gene. In addition, these flavones enhanced adiponectin mRNA expression, increased lipolysis and enhanced the expression of lipolytic genes: adipose triglycerides lipase (ATGL), hormone sensitive lipase (HSL) and monoglycerides lipase (MAGL) in mature 3T3-L1 adipocytes. Overall, PMF was seen to be a more potent inhibitor of both PL activity and adipogenesis versus TMF. These results suggest that PMF and TMF possess anti-obesity activities and can be further evaluated for their anti-obesity effects.


Assuntos
Adipogenia , Flavonas , Camundongos , Suínos , Animais , Lipase/metabolismo , Simulação de Acoplamento Molecular , Células 3T3-L1 , Proteína alfa Estimuladora de Ligação a CCAAT/genética , PPAR gama/genética , PPAR gama/metabolismo , Flavonas/farmacologia , Triglicerídeos/metabolismo , Obesidade , Diferenciação Celular
6.
Chem Biol Interact ; 379: 110503, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084996

RESUMO

Hydroxylated polymethoxyflavones (HPMFs) have been shown to possess various anti-disease effects, including against obesity. This study investigates the anti-obesity effects of HPMFs in further detail, aiming to gain understanding of their mechanism of action in this context. The current study demonstrates that two HPMFs; 3'-hydroxy-5,7,4',5'-tetramethoxyflavone (3'OH-TetMF) and 4'-hydroxy-5,7,3',5'-tetramethoxyflavone (4'OH-TetMF) possess anti-obesity effects. They both significantly reduced pancreatic lipase activity in a competitive manner as demonstrated by molecular docking and kinetic studies. In cell studies, it was revealed that both of the HPMFs suppress differentiation of 3T3-L1 mouse embryonic fibroblast cells during the early stages of adipogenesis. They also reduced expression of key adipogenic and lipogenic marker genes, namely peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT/enhancer-binding protein α and ß (C/EBP α and ß), adipocyte binding protein 2 (aP2), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBF 1). They also enhanced the expression of cell cycle genes, i.e., cyclin D1 (CCND1) and C-Myc, and reduced cyclin A2 expression. When further investigated, it was also observed that these HPMFs accelerate lipid breakdown (lipolysis) and enhance lipolytic genes expression. Moreover, they also reduced the secretion of proteins (adipokines), including pro-inflammatory cytokines, from mature adipocytes. Taken together, this study concludes that these HPMFs have anti-obesity effects, which are worthy of further investigation.


Assuntos
Adipogenia , Lipólise , Animais , Camundongos , Lipase/metabolismo , Lipase/farmacologia , Células 3T3-L1 , Cinética , Simulação de Acoplamento Molecular , Fibroblastos/metabolismo , Diferenciação Celular , Obesidade/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
7.
Chem Commun (Camb) ; 58(87): 12200-12203, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239130

RESUMO

We have created sequenced phosphoester-linked trimers of aromatic donor/acceptors which participate in charge-transfer interactions. Each sequence displays characteristic self-assembly, and complementary sequences interact with each other to produce new nanostructures and thermochromism. This paves the way towards new functional nanomaterials which make bio-analogous use of sequence to tune structure.


Assuntos
Nanoestruturas , Nanoestruturas/química
8.
Chem Sci ; 13(33): 9761-9773, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091903

RESUMO

The rise of antimicrobial resistance remains one of the greatest global health threats facing humanity. Furthermore, the development of novel antibiotics has all but ground to a halt due to a collision of intersectional pressures. Herein we determine the antimicrobial efficacy for 14 structurally related supramolecular self-associating amphiphiles against clinically relevant Gram-positive methicillin resistant Staphylococcus aureus and Gram-negative Escherichia coli. We establish the ability of these agents to selectively target phospholipid membranes of differing compositions, through a combination of computational host:guest complex formation simulations, synthetic vesicle lysis, adhesion and membrane fluidity experiments, alongside our novel 1H NMR CPMG nanodisc coordination assays, to verify a potential mode of action for this class of compounds and enable the production of evermore effective next-generation antimicrobial agents. Finally, we select a 7-compound subset, showing two lead compounds to exhibit 'druggable' profiles through completion of a variety of in vivo and in vitro DMPK studies.

9.
Chem Sci ; 12(40): 13273-13282, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34777745

RESUMO

While cancer now impacts the health and well-being of more of the human population than ever before, the exponential rise in antimicrobial resistant (AMR) bacterial infections means AMR is predicted to become one of the greatest future threats to human health. It is therefore vital that novel therapeutic strategies are developed that can be used in the treatment of both cancer and AMR infections. Whether the target of a therapeutic agent be inside the cell or in the cell membrane, it must either interact with or cross this phospholipid barrier to elicit the desired cellular effect. Here we summarise findings from published research into the phospholipid membrane composition of bacterial and cancer cell lines and biological samples from cancer patients. These data not only highlight key differences in the membrane composition of these biological samples, but also the methods used to elucidate and report the results of this analogous research between the microbial and cancer fields.

10.
RSC Adv ; 11(23): 14213-14217, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423951

RESUMO

Many chemotherapeutic drugs have a narrow therapeutic window due to inefficient tumour cell permeation. Supramolecular self-associating amphiphilic salts (SSAs) are a unique class of small molecules that offer potential as next generation cancer drugs and/or therapeutic enhancement agents. Herein, we demonstrate the cytotoxicity of seven SSAs towards both ovarian and glioblastoma cancer cells. We also utilize the intrinsic fluorescent properties of one of these lead SSAs to provide evidence for this class of compound to both bind to the exterior cancer cell surface and permeate the cell membrane, to become internalized. Furthermore, we demonstrate synergistic effects of two lead SSAs on cisplatin-mediated cytotoxicity of ovarian cancer cells and show that this correlates with increased DNA damage and apoptosis versus either agent alone. This work provides the first evidence that SSAs interact with and permeate cancer cell membranes and enhance the cytotoxic activity of a chemotherapeutic drug in human cancer cells.

11.
Bioorg Med Chem Lett ; 20(14): 4045-9, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20561787

RESUMO

A range of 3,6-di(hetero)arylimidazo[1,2-a]pyrazine ATP-competitive inhibitors of CHK1 were developed by scaffold hopping from a weakly active screening hit. Efficient synthetic routes for parallel synthesis were developed to prepare analogues with improved potency and ligand efficiency against CHK1. Kinase profiling showed that the imidazo[1,2-a]pyrazines could inhibit other kinases, including CHK2 and ABL, with equivalent or better potency depending on the pendant substitution. These 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines appear to represent a general kinase inhibitor scaffold.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/química , Pirazinas/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos
12.
Bioorg Med Chem ; 18(2): 707-18, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20022510

RESUMO

5-(Hetero)aryl-3-(4-carboxamidophenyl)-2-aminopyridine inhibitors of CHK2 were identified from high throughput screening of a kinase-focussed compound library. Rapid exploration of the hits through straightforward chemistry established structure-activity relationships and a proposed ATP-competitive binding mode which was verified by X-ray crystallography of several analogues bound to CHK2. Variation of the 5-(hetero)aryl substituent identified bicyclic dioxolane and dioxane groups which improved the affinity and the selectivity of the compounds for CHK2 versus CHK1. The 3-(4-carboxamidophenyl) substituent could be successfully replaced by acyclic omega-aminoalkylamides, which made additional polar interactions within the binding site and led to more potent inhibitors of CHK2. Compounds from this series showed activity in cell-based mechanistic assays for inhibition of CHK2.


Assuntos
Aminopiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Aminopiridinas/síntese química , Aminopiridinas/química , Sítios de Ligação , Linhagem Celular , Quinase do Ponto de Checagem 2 , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
13.
Phytochemistry ; 180: 112513, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010536

RESUMO

The prevalence of obesity is increasing rapidly globally and has recently reached pandemic proportions. It is a multifactorial disorder linked to a number of non-communicable diseases such as type-2 diabetes, cardiovascular disease, and cancer. Over-nutrition and a sedentary lifestyle are considered the most significant causes of obesity; a healthy lifestyle and behavioural interventions are the most powerful ways to achieve successful weight loss, but to maintain this in the long term can prove difficult for many individuals, without medical intervention. Various pharmacological anti-obesogenic drugs have been tested and marketed in the past and have been moderately successful in the management of obesity, but their adverse effects on human health often outweigh the benefits. Natural products from plants, either in the form of crude extracts or purified phytochemicals, have been shown to have anti-obesogenic properties and are generally considered as nontoxic and cost-effective compared to synthetic alternatives. These plant products combat obesity by targeting the various pathways and/or regulatory functions intricately linked to obesity. Their mechanisms of action include inhibition of pancreatic lipase activities, an increase in energy expenditure, appetite regulation, lipolytic effects, and inhibition of white adipose tissue development. In this review, we discuss the distinct anti-obesogenic properties of recently reported plant extracts and specific bioactive compounds, along with their molecular mechanisms of action. This review will provide a common platform for understanding the different causes of obesity and the possible approaches to using plant products in tackling this worldwide health issue.


Assuntos
Fármacos Antiobesidade , Diabetes Mellitus Tipo 2 , Fármacos Antiobesidade/farmacologia , Metabolismo Energético , Humanos , Obesidade/tratamento farmacológico , Compostos Fitoquímicos/farmacologia
14.
Cancer Res ; 80(8): 1735-1747, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32161100

RESUMO

Checkpoint kinase 1 (CHK1) is a key mediator of the DNA damage response that regulates cell-cycle progression, DNA damage repair, and DNA replication. Small-molecule CHK1 inhibitors sensitize cancer cells to genotoxic agents and have shown single-agent preclinical activity in cancers with high levels of replication stress. However, the underlying genetic determinants of CHK1 inhibitor sensitivity remain unclear. We used the developmental clinical drug SRA737 in an unbiased large-scale siRNA screen to identify novel mediators of CHK1 inhibitor sensitivity and uncover potential combination therapies and biomarkers for patient selection. We identified subunits of the B-family of DNA polymerases (POLA1, POLE, and POLE2) whose silencing sensitized the human A549 non-small cell lung cancer (NSCLC) and SW620 colorectal cancer cell lines to SRA737. B-family polymerases were validated using multiple siRNAs in a panel of NSCLC and colorectal cancer cell lines. Replication stress, DNA damage, and apoptosis were increased in human cancer cells following depletion of the B-family DNA polymerases combined with SRA737 treatment. Moreover, pharmacologic blockade of B-family DNA polymerases using aphidicolin or CD437 combined with CHK1 inhibitors led to synergistic inhibition of cancer cell proliferation. Furthermore, low levels of POLA1, POLE, and POLE2 protein expression in NSCLC and colorectal cancer cells correlated with single-agent CHK1 inhibitor sensitivity and may constitute biomarkers of this phenotype. These findings provide a potential basis for combining CHK1 and B-family polymerase inhibitors in cancer therapy. SIGNIFICANCE: These findings demonstrate how the therapeutic benefit of CHK1 inhibitors may potentially be enhanced and could have implications for patient selection and future development of new combination therapies.


Assuntos
Afidicolina/farmacologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Retinoides/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Dano ao DNA , DNA Polimerase I/antagonistas & inibidores , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , DNA Polimerase II/antagonistas & inibidores , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Polimerase beta , Drogas em Investigação/farmacologia , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética
15.
Clin Cancer Res ; 26(18): 4777-4784, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32616501

RESUMO

PURPOSE: AT13148 is an oral AGC kinase inhibitor, which potently inhibits ROCK and AKT kinases. In preclinical models, AT13148 has been shown to have antimetastatic and antiproliferative activity. PATIENTS AND METHODS: The trial followed a rolling six design during dose escalation. An intrapatient dose escalation arm to evaluate tolerability and a biopsy cohort to study pharmacodynamic effects were later added. AT13148 was administered orally three days a week (Mon-Wed-Fri) in 28-day cycles. Pharmacokinetic profiles were assessed using mass spectrometry and pharmacodynamic studies included quantifying p-GSK3ß levels in platelet-rich plasma (PRP) and p-cofilin and p-MLC2 levels in tumor biopsies. RESULTS: Fifty-one patients were treated on study. The safety of 5-300 mg of AT13148 was studied. Further, the doses of 120-180-240 mg were studied in an intrapatient dose escalation cohort. The dose-limiting toxicities included hypotension (300 mg), pneumonitis, and elevated liver enzymes (240 mg), and skin rash (180 mg). The most common side effects were fatigue, nausea, headaches, and hypotension. On the basis of tolerability, 180 mg was considered the maximally tolerated dose. At 180 mg, mean C max and AUC were 400 nmol/L and 13,000 nmol/L/hour, respectively. At 180 mg, ≥50% reduction of p-cofilin was observed in 3 of 8 posttreatment biopsies. CONCLUSIONS: AT13148 was the first dual potent ROCK-AKT inhibitor to be investigated for the treatment of solid tumors. The narrow therapeutic index and the pharmacokinetic profile led to recommend not developing this compound further. There are significant lessons learned in designing and testing agents that simultaneously inhibit multiple kinases including AGC kinases in cancer.


Assuntos
2-Hidroxifenetilamina/análogos & derivados , Antineoplásicos/efeitos adversos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Pirazóis/efeitos adversos , 2-Hidroxifenetilamina/administração & dosagem , 2-Hidroxifenetilamina/efeitos adversos , 2-Hidroxifenetilamina/farmacocinética , Adulto , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Relação Dose-Resposta a Droga , Toxidermias/epidemiologia , Toxidermias/etiologia , Feminino , Cefaleia/induzido quimicamente , Cefaleia/epidemiologia , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/epidemiologia , Hipotensão/induzido quimicamente , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/sangue , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Quinases Associadas a rho/antagonistas & inibidores
16.
J Cell Biol ; 160(3): 423-32, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12566432

RESUMO

Epithelial tight junctions regulate paracellular permeability, restrict apical/basolateral intramembrane diffusion of lipids, and have been proposed to participate in the control of epithelial cell proliferation and differentiation. Previously, we have identified ZO-1-associated nucleic acid binding proteins (ZONAB), a Y-box transcription factor whose nuclear localization and transcriptional activity is regulated by the tight junction-associated candidate tumor suppressor ZO-1. Now, we found that reduction of ZONAB expression using an antisense approach or by RNA interference strongly reduced proliferation of MDCK cells. Transfection of wild-type or ZONAB-binding fragments of ZO-1 reduced proliferation as well as nuclear ZONAB pools, indicating that promotion of proliferation by ZONAB requires its nuclear accumulation. Overexpression of ZONAB resulted in increased cell density in mature monolayers, and depletion of ZONAB or overexpression of ZO-1 reduced cell density. ZONAB was found to associate with cell division kinase (CDK) 4, and reduction of nuclear ZONAB levels resulted in reduced nuclear CDK4. Thus, our data indicate that tight junctions can regulate epithelial cell proliferation and cell density via a ZONAB/ZO-1-based pathway. Although this regulatory process may also involve regulation of transcription by ZONAB, our data suggest that one mechanism by which ZONAB and ZO-1 influence proliferation is by regulating the nuclear accumulation of CDK4.


Assuntos
Comunicação Celular/fisiologia , Divisão Celular/fisiologia , Proteínas de Ligação a DNA/deficiência , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas , Junções Íntimas/metabolismo , Fatores de Transcrição/deficiência , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Quinase 4 Dependente de Ciclina , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas de Membrana/genética , Fosfoproteínas/genética , Estrutura Terciária de Proteína/fisiologia , RNA Antissenso/genética , Proteínas Recombinantes de Fusão , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Proteína da Zônula de Oclusão-1
17.
Curr Opin Pharmacol ; 8(4): 393-412, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18721898

RESUMO

The strategy of 'drugging the cancer kinome' has led to the successful development and regulatory approval of several novel molecular targeted agents. The spotlight is now shifting to the phosphatidylinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) pathway as a key potential target. This review details the role of the pathway in oncogenesis and the rationale for inhibiting its vital components. The focus will be on the progress made in the development of novel therapies for cancer treatment, with emphasis placed on agents that have entered clinical development. Strategies involving horizontal and vertical blockade of the pathway, as well as the use of biomarkers to select appropriate patients and to provide proof of target modulation will also be highlighted. Finally, we discuss the issues and limitations involved with targeting the PI3K-AKT-mTOR pathway, and predict what the future may hold for these novel anticancer therapeutics.


Assuntos
Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Neoplasias/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR
18.
FEBS J ; 275(12): 3099-109, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18479465

RESUMO

Cyclin dependent kinase 4 is a key regulator of the cell cycle and its activity is frequently deregulated in cancer. The activity of cyclin dependent kinase 4 is controlled by multiple mechanisms, including phosphorylation of tyrosine 17. This site is equivalent to tyrosine 15 of cyclin dependent kinase 1, which undergoes inhibitory phosphorylation by WEE1 and MYT1; however, the kinases that phosphorylate cyclin dependent kinase 4 on tyrosine 17 are still unknown. In the present study, we generated a phosphospecific antibody to the tyrosine 17-phosphorylated form of cyclin dependent kinase 4, and showed that this site is phosphorylated to a low level in asynchronously proliferating HCT116 cells. We purified tyrosine 17 kinases from HeLa cells and found that the Src family non-receptor tyrosine kinase C-YES contributes a large fraction of the tyrosine 17 kinase activity in HeLa lysates. C-YES also phosphorylated cyclin dependent kinase 4 when transfected into HCT116 cells, and treatment of cells with Src family kinase inhibitors blocked the tyrosine 17 phosphorylation of cyclin dependent kinase 4. Taken together, the results obtained in the present study provide the first evidence that Src family kinases, but not WEE1 or MYT1, phosphorylate cyclin dependent kinase 4 on tyrosine 17, and help to resolve how the phosphorylation of this site is regulated.


Assuntos
Quinase 4 Dependente de Ciclina/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Quinase 4 Dependente de Ciclina/química , Células HeLa , Humanos , Proteínas de Membrana , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-yes/isolamento & purificação , Proteínas Proto-Oncogênicas c-yes/metabolismo , Homologia de Sequência de Aminoácidos
19.
J Mol Biol ; 367(3): 882-94, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17275837

RESUMO

Although the crystal structure of the anti-cancer target protein kinase B (PKBbeta/Akt-2) has been useful in guiding inhibitor design, the closely related kinase PKA has generally been used as a structural mimic due to its facile crystallization with a range of ligands. The use of PKB-inhibitor crystallography would bring important benefits, including a more rigorous understanding of factors dictating PKA/PKB selectivity, and the opportunity to validate the utility of PKA-based surrogates. We present a "back-soaking" method for obtaining PKBbeta-ligand crystal structures, and provide a structural comparison of inhibitor binding to PKB, PKA, and PKA-PKB chimera. One inhibitor presented here exhibits no PKB/PKA selectivity, and the compound adopts a similar binding mode in all three systems. By contrast, the PKB-selective inhibitor A-443654 adopts a conformation in PKB and PKA-PKB that differs from that with PKA. We provide a structural explanation for this difference, and highlight the ability of PKA-PKB to mimic the true PKB binding mode in this case.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Animais , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Técnicas In Vitro , Modelos Moleculares , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática
20.
J Med Chem ; 51(7): 2147-57, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18345609

RESUMO

Fragment-based screening identified 7-azaindole as a protein kinase B inhibitor scaffold. Fragment elaboration using iterative crystallography of inhibitor-PKA-PKB chimera complexes efficiently guided improvements in the potency and selectivity of the compounds, resulting in the identification of nanomolar 6-(piperidin-1-yl)purine, 4-(piperidin-1-yl)-7-azaindole, and 4-(piperidin-1-yl)pyrrolo[2,3- d]pyrimidine inhibitors of PKBbeta with antiproliferative activity and showing pathway inhibition in cells. A divergence in the binding mode was seen between 4-aminomethylpiperidine and 4-aminopiperidine containing molecules. Selectivity for PKB vs PKA was observed with 4-aminopiperidine derivatives, and the most PKB-selective inhibitor (30-fold) showed significantly different bound conformations between PKA and PKA-PKB chimera.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Humanos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Pirimidinas/metabolismo , Pirróis/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa