Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Gastroenterology ; 153(5): 1363-1377.e6, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28827082

RESUMO

BACKGROUND & AIMS: Alterations in signaling pathways that regulate resolution of inflammation (resolving pathways) contribute to pathogenesis of ulcerative colitis (UC). The resolution process is regulated by lipid mediators, such as those derived from the ω-3 docosahexaenoic acid (DHA), whose esterified form is transported by the major facilitator superfamily domain containing 2A (MFSD2A) through the endothelium of brain, retina, and placenta. We investigated if and how MFSD2A regulates lipid metabolism of gut endothelial cells to promote resolution of intestinal inflammation. METHODS: We performed lipidomic and functional analyses of MFSD2A in mucosal biopsies and primary human intestinal microvascular endothelial cells (HIMECs) isolated from surgical specimens from patients with active, resolving UC and healthy individuals without UC (controls). MFSD2A was knocked down in HIMECs with small hairpin RNAs or overexpressed from a lentiviral vector. Human circulating endothelial progenitor cells that overexpress MFSD2A were transferred to CD1 nude mice with dextran sodium sulfate-induced colitis, with or without oral administration of DHA. RESULTS: Colonic biopsies from patients with UC had reduced levels of inflammation-resolving DHA-derived epoxy metabolites compared to healthy colon tissues or tissues with resolution of inflammation. Production of these metabolites by HIMECs required MFSD2A, which is required for DHA retention and metabolism in the gut vasculature. In mice with colitis, transplanted endothelial progenitor cells that overexpressed MFSD2A not only localized to the inflamed mucosa but also restored the ability of the endothelium to resolve intestinal inflammation, compared with mice with colitis that did not receive MFSD2A-overexpressing endothelial progenitors. CONCLUSIONS: Levels of DHA-derived epoxides are lower in colon tissues from patients with UC than healthy and resolving mucosa. Production of these metabolites by gut endothelium requires MFSD2A; endothelial progenitor cells that overexpress MFSD2A reduce colitis in mice. This pathway might be induced to resolve intestinal inflammation in patients with colitis.


Assuntos
Colite/prevenção & controle , Colo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Células Progenitoras Endoteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/patologia , Células Progenitoras Endoteliais/transplante , Compostos de Epóxi/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos Nus , Oxilipinas/metabolismo , Interferência de RNA , Transdução de Sinais , Simportadores , Transfecção , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Supressoras de Tumor/genética
2.
Heliyon ; 9(5): e16229, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234630

RESUMO

Contamination of cell cultures can result in a significant loss of precious biological material, particularly in long-term processes including amplification of chimeric antigen receptors (CAR)-T cells and differentiation of patient-derived stem cells, for therapeutic purposes. Bacterial contamination can also lead to more complex conditions such as sepsis which can cause morbidity and mortality, despite strict controls and good laboratory/manufacturing practices in the manipulation of complex biological samples such as blood used in autologous and allogeneic stem cells transplantation. The current standard method to identify biological risk is the set-up of microbial cultures, which can be time consuming with the likelihood of wasting large amounts of reagents in the event of contamination. Real-Time Polymerase Chain Reaction (qPCR) is a molecular method able to detect biological agents in a highly sensitive and specific way and in a short time. However, qPCR assays require complex DNA/RNA purification steps and expensive benchtop instruments, which may not always be available. This paper reports an extraction-free and low-volume protocol for qPCR in a standard instrument, which has been demonstrated to be effective on both Gram-positive (Gram+) and Gram-negative (Gram-) bacteria. Detection has been obtained from spiked cell culture samples, reaching a limit of detection (LOD) of 1 colony forming unit (CFU)/ml. To demonstrate the high potential of this optimized procedure, the same samples were also tested on a Point-Of-Care platform, which includes a cartridge with micro-chambers and a compact instrument, capable of performing qPCR with the same efficiency. Staphylococcus aureus (Gram+) was selected as the target for a proof of concept, achieving a LOD of 1 CFU/ml also on the portable device. The availability of these results paves the way for a simplified protocol for DNA extraction and amplification.

3.
MethodsX ; 9: 101759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774416

RESUMO

The Liquid Biopsy (LB) is an opportunity for non-invasive diagnosis and prognosis of various diseases. To date, it isn't possible to consider that tissue biopsy can represent a pathology entirety. Then, body fluids are rich in a large number and variety of biomarkers and they can provide information about several diseases.•Recently, other biological fluids, easy to be collected are rising for their significant content of biomarkers and for the possibility to collect and manipulate them without the intervention of medical staff.•The management of biological fluids requires suitable storage methods. Temperature, storage time and physical stresses due to sample handling can lead to chemical and physical changes that may induce sample degradation and incorrect analysis.•The reliability of a diagnostic or screening test depends on its sensitivity and specificity. As the liquid biopsy is a 'snapshot' of a pathophysiological condition, it is crucial that its components do not degrade due to the improper handling of the body fluid.In this review, some handling methods of Saliva, Urine, Stool, Seminal Fluid, Tears and Sweat samples will be described, as well as protocols to facilitate the analysis of metabolites, nucleic acids, proteins and Extracellular Vesicles (EVs) from those unusual body fluids.

4.
Clin Chim Acta ; 536: 104-111, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126763

RESUMO

Over the past two years, SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2) infection has spread globally causing multi-organ disease and severely impacting the healthcare systems of all countries. Accordingly, the development of easy-to-access diagnostic devices has become essential to limit the effect of the virus worldwide. Real-Time PCR is considered the gold standard to identify SARS-CoV-2 infection due to high sensitivity, affordability, and capacity to detect low viral loads at early disease stage. Advances in lab on a chip technology has led to the development of some Point-of-Care (POC) devices using Real-Time PCR and approved by the United States Food and Drug Administration. We provide an overview on recently developed POC tests for the rapid diagnosis of COVID-19 infection. Practical applications of miniaturized devices based on viral genome amplification as well as favorable features such as reduced sample processing time, ease of use by non-specialized personnel, and the potential of PCR-based POC technologies will be highlighted and reviewed.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Sensibilidade e Especificidade
5.
Micromachines (Basel) ; 13(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36143994

RESUMO

The possibility of fabricating micrometric pore size membranes is gaining great interest in many applications, from studying cell signaling, to filtration. Currently, many technologies are reported to fabricate such microsystems, the choice of which depends strictly on the substrate material and on the final application. Here, we demonstrate the capability with a single femtosecond laser source and experimental setup to fabricate micromembranes both on polymeric and multilayer metallic substrate, without the need for moulds, mask, and complex facilities. In particular, the flexibility of laser drilling was exploited to obtain microfilters with pore size of 8 and 18 µm in diameter, on metallic and polymeric substrate, respectively, and controlled distribution. For evaluating the possibility to use such laser-fabricated membranes into biological assay, their biocompatibility has been investigated. To this aim, as a proof of concept, we tested the two materials into viability tests. The culture of mammalian cells on these microfabricated membranes were studied showing their compatibility with cells.

6.
Sci Rep ; 12(1): 381, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013389

RESUMO

GPR120 (encoded by FFAR4 gene) is a receptor for long chain fatty acids, activated by ω-3 Polyunsaturated Fatty Acids (PUFAs), and expressed in many cell types. Its role in the context of colorectal cancer (CRC) is still puzzling with many controversial evidences. Here, we explored the involvement of epithelial GPR120 in the CRC development. Both in vitro and in vivo experiments were conducted to mimic the conditional deletion of the receptor from gut epithelium. Intestinal permeability and integrity of mucus layer were assessed by using Evans blue dye and immunofluorescence for MUC-2 protein, respectively. Microbiota composition, presence of lipid mediators and short chain fatty acids were analyzed in the stools of conditional GPR120 and wild type (WT) mice. Incidence and grade of tumors were evaluated in all groups of mice before and after colitis-associated cancer. Finally, GPR120 expression was analyzed in 9 human normal tissues, 9 adenomas, and 17 primary adenocarcinomas. Our work for the first time highlights the role of the receptor in the progression of colorectal cancer. We observed that the loss of epithelial GPR120 in the gut results into increased intestinal permeability, microbiota translocation and dysbiosis, which turns into hyperproliferation of epithelial cells, likely through the activation of ß -catenin signaling. Therefore, the loss of GPR120 represents an early event of CRC, but avoid its progression as invasive cancer. these results demonstrate that the epithelial GPR120 receptor is essential to maintain the mucosal barrier integrity and to prevent CRC developing. Therefore, our data pave the way to GPR120 as an useful marker for the phenotypic characterization of CRC lesions and as new potential target for CRC prevention.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Associadas a Colite/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Animais , Translocação Bacteriana , Proliferação de Células , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/patologia , Colo/microbiologia , Colo/patologia , Progressão da Doença , Disbiose , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos Knockout , Permeabilidade , Receptores Acoplados a Proteínas G/genética , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa