Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 52(5): 1039-1060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30977987

RESUMO

BACKGROUND/AIMS: Endothelial cells exposed to the Random Positioning Machine (RPM) reveal three different phenotypes. They grow as a two-dimensional monolayer and form three-dimensional (3D) structures such as spheroids and tubular constructs. As part of the ESA-SPHEROIDS project we want to understand how endothelial cells (ECs) react and adapt to long-term microgravity. METHODS: During a spaceflight to the International Space Station (ISS) and a subsequent stay onboard, human ECs (EA.hy926 cell line) were cultured for 12 days in real microgravity inside an automatic flight hardware, specially designed for use in space. ECs were cultivated in the absence or presence of vascular endothelial growth factor, which had demonstrated a cell-protective effect on ECs exposed to an RPM simulating microgravity. After cell fixation in space and return of the samples, we examined cell morphology and analyzed supernatants by Multianalyte Profiling technology. RESULTS: The fixed samples comprised 3D multicellular spheroids and tube-like structures in addition to monolayer cells, which are exclusively observed during growth under Earth gravity (1g). Within the 3D aggregates we detected enhanced collagen and laminin. The supernatant analysis unveiled alterations in secretion of several growth factors, cytokines, and extracellular matrix components as compared to cells cultivated at 1g or on the RPM. This confirmed an influence of gravity on interacting key proteins and genes and demonstrated a flight hardware impact on the endothelial secretome. CONCLUSION: Since formation of tube-like aggregates was observed only on the RPM and during spaceflight, we conclude that microgravity may be the major cause for ECs' 3D aggregation.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Voo Espacial , Esferoides Celulares/metabolismo , Ausência de Peso , Linhagem Celular , Células Epiteliais/citologia , Humanos , Esferoides Celulares/citologia
2.
Biomaterials ; 124: 126-156, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28199884

RESUMO

Human endothelial cells (ECs) were sent to the International Space Station (ISS) to determine the impact of microgravity on the formation of three-dimensional structures. For this project, an automatic experiment unit (EU) was designed allowing cell culture in space. In order to enable a safe cell culture, cell nourishment and fixation after a pre-programmed timeframe, the materials used for construction of the EUs were tested in regard to their biocompatibility. These tests revealed a high biocompatibility for all parts of the EUs, which were in contact with the cells or the medium used. Most importantly, we found polyether ether ketones for surrounding the incubation chamber, which kept cellular viability above 80% and allowed the cells to adhere as long as they were exposed to normal gravity. After assembling the EU the ECs were cultured therein, where they showed good cell viability at least for 14 days. In addition, the functionality of the automatic medium exchange, and fixation procedures were confirmed. Two days before launch, the ECs were cultured in the EUs, which were afterwards mounted on the SpaceX CRS-8 rocket. 5 and 12 days after launch the cells were fixed. Subsequent analyses revealed a scaffold-free formation of spheroids in space.


Assuntos
Técnicas de Cultura de Células/instrumentação , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Impressão Tridimensional/instrumentação , Voo Espacial/instrumentação , Engenharia Tecidual/instrumentação , Ausência de Peso , Técnicas de Cultura Celular por Lotes/instrumentação , Proliferação de Células/fisiologia , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Robótica/instrumentação
3.
J Hazard Mater ; 279: 365-74, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25080157

RESUMO

Workplace exposure to engineered nanoparticles (ENPs) is a potential health and environmental hazard. This paper reports a novel approach for tracking hazardous airborne ENPs by applying online poly (amic) acid membranes (PAA) with offline electrochemical detection. Test aerosol (Fe2O3, TiO2 and ZnO) nanoparticles were produced using the Harvard (Versatile Engineered Generation System) VENGES system. The particle morphology, size and elemental composition were determined using SEM, XRD and EDS. The PAA membrane electrodes used to capture the airborne ENPs were either stand-alone or with electron-beam gold-coated paper substrates. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conceptually illustrate that exposure levels of industry-relevant classes of airborne nanoparticles could be captured and electrochemically detected at PAA membranes filter electrodes. CV parameters showed that PAA catalyzed the reduction of Fe2O3 to Fe(2+) with a size-dependent shift in reduction potential (E(0)). Using the proportionality of peak current to concentration, the amount of Fe2O3 was found to be 4.15×10(-17)mol/cm(3) PAA electrodes. Using EIS, the maximum phase angle (Φmax) and the interfacial charge transfer resistance (Rct) increased significantly using 100µg and 1000µg of TiO2 and ZnO respectively. The observed increase in Φmax and Rct at increasing concentration is consistent with the addition of an insulating layer of material on the electrode surface. The integrated VENGES/PAA filter sensor system has the potential to be used as a portable monitoring system.


Assuntos
Poluentes Ambientais/química , Nanopartículas/química , Polímeros/química , Aerossóis , Eletroquímica , Filtração , Membranas Artificiais , Microscopia Eletrônica de Varredura , Tamanho da Partícula
4.
ACS Sustain Chem Eng ; 1(7): 843-857, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23961338

RESUMO

The likely success or failure of the nanotechnology industry depends on the environmental health and safety of engineered nanomaterials (ENMs). While efforts toward engineering safer ENMs are sparse, such efforts are considered crucial to the sustainability of the nanotech industry. A promising approach in this regard is to coat potentially toxic nanomaterials with a biologically inert layer of amorphous SiO2. Core-shell particles exhibit the surface properties of their amorphous SiO2 shell while maintaining specific functional properties of their core material. A major challenge in the development of functional core-shell particles is the design of scalable high-yield processes that can meet large-scale industrial demand. Here, we present a safer formulation concept for flame-generated ENMs based on a one-step, in flight SiO2 encapsulation process, which was recently introduced by the authors as a means for a scalable manufacturing of SiO2 coated ENMs. Firstly, the versatility of the SiO2-coating process is demonstrated by applying it to four ENMs (CeO2, ZnO, Fe2O3, Ag) marked by their prevalence in consumer products as well as their range in toxicity. The ENM-dependent coating fundamentals are assessed and process parameters are optimized for each ENM investigated. The effects of the SiO2-coating on core material structure, composition and morphology, as well as the coating efficiency on each nanostructured material, are evaluated using state-of-the-art analytical methods (XRD, N2 adsorption, TEM, XPS, isopropanol chemisorption). Finally, the biological interactions of SiO2-coated vs. uncoated ENMs are evaluated using cellular bioassays, providing valuable evidence for reduced toxicity for the SiO2-coated ENMs. Results indicate that the proposed 'safer by design' concept bears great promise for scaled-up application in industry in order to reduce the toxicological profile of ENMs for certain applications.

5.
Nanotoxicology ; 7(8): 1338-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061914

RESUMO

Nanoscale CeO2 is increasingly used for industrial and commercial applications, including catalysis, UV-shielding and as an additive in various nanocomposites. Because of its increasing potential for consumer and occupational exposures, a comprehensive toxicological characterisation of this nanomaterial is needed. Preliminary results from intratracheal instillation studies in rats point to cytotoxicity and inflammation, though these studies may not accurately use realistic nanoscale exposure profiles. By contrast, published in vitro cellular studies have reported limited toxicological outcomes for the case of nano-ceria. Here, the authors present an integrative study evaluating the toxicity of nanoscale CeO2 both in vitro, using the A549 lung epithelial cell line, and in vivo using an intact rat model. Realistic nano-ceria exposure atmospheres were generated using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES), and rats were exposed via inhalation. Finally, the use of a nanothin amorphous SiO2 encapsulation coating as a means of mitigating CeO2 toxicity was assessed. Results from the inhalation experiments show lung injury and inflammation with increased PMN and LDH levels in the bronchoalveolar lavage fluid of the CeO2-exposed rats. Moreover, exposure to SiO2-coated CeO2 did not induce any pulmonary toxicity to the animals, representing clear evidence for the safe by design SiO2-encapsualtion concept.


Assuntos
Cério/toxicidade , Exposição por Inalação/análise , Nanopartículas Metálicas/toxicidade , Testes de Toxicidade/métodos , Animais , Líquido da Lavagem Broncoalveolar/citologia , Linhagem Celular , Humanos , L-Lactato Desidrogenase/análise , Macrófagos Alveolares/química , Masculino , Neutrófilos/química , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade/instrumentação , Testes de Toxicidade/normas
6.
Anal Chim Acta ; 738: 69-75, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22790702

RESUMO

Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO(3) nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20ppb) with short response (10-15s) and recovery times (35-70s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80-90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.


Assuntos
Acetona/análise , Técnicas Biossensoriais/instrumentação , Testes Respiratórios/instrumentação , Técnicas Biossensoriais/métodos , Testes Respiratórios/métodos , Diabetes Mellitus/diagnóstico , Humanos , Limite de Detecção , Nanopartículas/química , Óxidos/química , Sensibilidade e Especificidade , Silício/química , Tungstênio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa