Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Chem Rev ; 124(6): 3013-3036, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408451

RESUMO

The immune system's complexity and ongoing evolutionary struggle against deleterious pathogens underscore the value of vaccination technologies, which have been bolstering human immunity for over two centuries. Despite noteworthy advancements over these 200 years, three areas remain recalcitrant to improvement owing to the environmental instability of the biomolecules used in vaccines─the challenges of formulating them into controlled release systems, their need for constant refrigeration to avoid loss of efficacy, and the requirement that they be delivered via needle owing to gastrointestinal incompatibility. Nanotechnology, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), has emerged as a promising avenue for confronting these challenges, presenting a new frontier in vaccine development. Although these materials have been widely explored in the context of drug delivery, imaging, and cancer immunotherapy, their role in immunology and vaccine-related applications is a recent yet rapidly developing field. This review seeks to elucidate the prospective use of MOFs and COFs for biomaterial stabilization, eliminating the necessity for cold chains, enhancing antigen potency as adjuvants, and potentializing needle-free delivery of vaccines. It provides an expansive and critical viewpoint on this rapidly evolving field of research and emphasizes the vital contribution of chemists in driving further advancements.


Assuntos
Estruturas Metalorgânicas , Vacinas , Humanos , Nanotecnologia , Tecnologia , Adjuvantes Imunológicos
2.
Proc Natl Acad Sci U S A ; 120(11): e2218247120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877851

RESUMO

Needle-and-syringe-based delivery has been the commercial standard for vaccine administration to date. With worsening medical personnel availability, increasing biohazard waste production, and the possibility of cross-contamination, we explore the possibility of biolistic delivery as an alternate skin-based delivery route. Delicate formulations like liposomes are inherently unsuitable for this delivery model as they are fragile biomaterials incapable of withstanding shear stress and are exceedingly difficult to formulate as a lyophilized powder for room temperature storage. Here we have developed a approach to deliver liposomes into the skin biolistically-by encapsulating them in a nano-sized shell made of Zeolitic Imidazolate Framework-8 (ZIF-8). When encapsulated within a crystalline and rigid coating, the liposomes are not only protected from thermal stress, but also shear stress. This protection from stressors is crucial, especially for formulations with cargo encapsulated inside the lumen of the liposomes. Moreover, the coating provides the liposomes with a solid exterior that allows the particles to penetrate the skin effectively. In this work, we explored the mechanical protection ZIF-8 provides to liposomes as a preliminary investigation for using biolistic delivery as an alternative to syringe-and-needle-based delivery of vaccines. We demonstrated that liposomes with a variety of surface charges could be coated with ZIF-8 using the right conditions, and this coating can be just as easily removed-without causing any damage to the protected material. The protective coating prevented the liposomes from leaking cargo and helped in their effective penetration when delivered into the agarose tissue model and porcine skin tissue.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Animais , Suínos , Lipossomos , Biolística , Materiais Biocompatíveis , Contaminação de Medicamentos
3.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706935

RESUMO

π-stacking in ground-state dimers/trimers/tetramers of N-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal ⋅ mol-1 in strength, drastically surpassing that for the *3[pyrene]2 excimer (∼30 kcal ⋅ mol-1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (α a , α b , α c , ß) of (452, -16.8, -154, 273) × 10-6 ⋅ K-1 and (70.1, -44.7, 163, 177) × 10-6 ⋅ K-1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y.

4.
J Bacteriol ; 204(9): e0017222, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36005809

RESUMO

Klebsiella spp. commonly cause both uncomplicated urinary tract infection (UTI) and recurrent UTI (rUTI). Klebsiella quasipneumoniae, a relatively newly defined species of Klebsiella, has been shown to be metabolically distinct from Klebsiella pneumoniae, but its type 1 and type 3 fimbriae have not been studied. K. pneumoniae uses both type 1 and type 3 fimbriae to attach to host epithelial cells. The type 1 fimbrial operon is well conserved between Escherichia coli and K. pneumoniae apart from fimK, which is unique to Klebsiella spp. FimK contains an N-terminal DNA binding domain and a C-terminal phosphodiesterase (PDE) domain that has been hypothesized to cross-regulate type 3 fimbriae expression via modulation of cellular levels of cyclic di-GMP. Here, we find that a conserved premature stop codon in K. quasipneumoniae fimK results in truncation of the C-terminal PDE domain and that K quasipneumoniae strain KqPF9 cultured bladder epithelial cell association and invasion are dependent on type 3 but not type 1 fimbriae. Further, we show that basal expression of both type 1 and type 3 fimbrial operons as well as cultured bladder epithelial cell association is elevated in KqPF9 relative to uropathogenic K. pneumoniae TOP52. Finally, we show that complementation of KqPF9ΔfimK with the TOP52 fimK allele reduced type 3 fimbrial expression and cultured bladder epithelial cell attachment. Taken together these data suggest that the C-terminal PDE of FimK can modulate type 3 fimbrial expression in K. pneumoniae and its absence in K. quasipneumoniae may lead to a loss of type 3 fimbrial cross-regulation. IMPORTANCE K. quasipneumoniae is often indicated as the cause of opportunistic infections, including urinary tract infection, which affects >50% of women worldwide. However, the virulence factors of K. quasipneumoniae remain uninvestigated. Prior to this work, K. quasipneumoniae and K. pneumoniae had only been distinguished phenotypically by metabolic differences. This work contributes to the understanding of K. quasipneumoniae by evaluating the contribution of type 1 and type 3 fimbriae, which are critical colonization factors encoded by all Klebsiella spp., to K. quasipneumoniae bladder epithelial cell attachment in vitro. We observe clear differences in bladder epithelial cell attachment and regulation of type 3 fimbriae between uropathogenic K. pneumoniae and K. quasipneumoniae that coincide with a structural difference in the fimbrial regulatory gene fimK.


Assuntos
Bexiga Urinária , Infecções Urinárias , Códon sem Sentido/metabolismo , Células Epiteliais , Escherichia coli/genética , Feminino , Fímbrias Bacterianas/metabolismo , Humanos , Klebsiella , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Diester Fosfórico Hidrolases/genética , Fatores de Virulência/genética
5.
J Am Chem Soc ; 144(6): 2468-2473, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35099968

RESUMO

Two-dimensional covalent organic frameworks (2D-COFs) are a class of crystalline porous organic polymers that consist of covalently linked, two-dimensional sheets that can stack together through noncovalent interactions. Here we report the synthesis of a novel COF, called PyCOFamide, which has an experimentally observed pore size that is greater than 6 nm in diameter. This is among the largest pore size reported to date for a 2D-COF. PyCOFamide exhibits permanent porosity and high crystallinity as evidenced by the nitrogen adsorption, powder X-ray diffraction, and high-resolution transmission electron microscopy. We show that the pore size of PyCOFamide is large enough to accommodate fluorescent proteins such as Superfolder green fluorescent protein and mNeonGreen. This work demonstrates the utility of noncovalent structural reinforcement in 2D-COFs to produce larger and persistent pore sizes than previously possible.


Assuntos
Estruturas Metalorgânicas/química , Adsorção , Proteínas de Fluorescência Verde/química , Ligação de Hidrogênio , Estruturas Metalorgânicas/síntese química , Porosidade
6.
Virol J ; 19(1): 227, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581924

RESUMO

BACKGROUND: The paucity of SARS-CoV-2-specific virulence factors has greatly hampered the therapeutic management of patients with COVID-19 disease. Although available vaccines and approved therapies have shown tremendous benefits, the continuous emergence of new variants of SARS-CoV-2 and side effects of existing treatments continue to challenge therapy, necessitating the development of a novel effective therapy. We have previously shown that our developed novel single-stranded DNA aptamers not only target the trimer S protein of SARS-CoV-2, but also block the interaction between ACE2 receptors and trimer S protein of Wuhan origin, Delta, Delta plus, Alpha, Lambda, Mu, and Omicron variants of SARS-CoV-2. We herein performed in vivo experiments that administer the aptamer to the lungs by intubation as well as in vitro studies utilizing PBMCs to prove the efficacy and safety of our most effective aptamer, AYA2012004_L. METHODS: In vivo studies were conducted in transgenic mice expressing human ACE2 (K18hACE2), C57BL/6J, and Balb/cJ. Flow cytometry was used to check S-protein expressing pseudo-virus-like particles (VLP) uptake by the lung cells and test the immuogenicity of AYA2012004_L. Ames test was used to assess mutagenicity of AYA2012004_L. RT-PCR and histopathology were used to determine the biodistribution and toxicity of AYA2012004_L in vital organs of mice. RESULTS: We measured the in vivo uptake of VLPs by lung cells by detecting GFP signal using flow cytometry. AYA2012004_L specifically neutralized VLP uptake and also showed no inflammatory response in mice lungs. In addition, AYA2012004_L did not induce inflammatory response in the lungs of Th1 and Th2 mouse models as well as human PBMCs. AYA2012004_L was detectable in mice lungs and noticeable in insignificant amounts in other vital organs. Accumulation of AYA2012004_L in organs decreased over time. AYA2012004_L did not induce degenerative signs in tissues as seen by histopathology and did not cause changes in the body weight of mice. Ames test also certified that AYA2012004_L is non-mutagenic and proved it to be safe for in vivo studies. CONCLUSIONS: Our aptamer is safe, effective, and can neutralize the uptake of VLPs by lung cells when administered locally suggesting that it can be used as a potential therapeutic agent for COVID-19 management.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Humanos , Camundongos , Animais , COVID-19/terapia , SARS-CoV-2/genética , Aptâmeros de Nucleotídeos/uso terapêutico , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Distribuição Tecidual , Anticorpos Antivirais , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
7.
J Am Chem Soc ; 143(15): 5951-5957, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33822596

RESUMO

Solid-state thermoelastic behavior-a sudden exertion of an expansive or contractive physical force following a temperature change and phase transition in a solid-state compound-is rare in organic crystals, few are reversible systems, and most of these are limited to a dozen or so cycles before the crystal degrades or they reverse slowly over the course of many minutes or even hours. Comparable to thermosalience, wherein crystal phase changes induce energetic jumping, thermomorphism produces physical work via consistent and near-instantaneous predictable directional force. In this work, we show a fully reversible thermomorphic actuator that is stable at room temperature for multiple years and is capable of actuation for more than 200 cycles at near-ambient temperature. Specifically, the crystals shrink to 90% of their original length instantaneously upon heating beyond 45 °C and expand back to their original length upon cooling below 35 °C. Furthermore, the phase transition occurs instantaneously, with little obvious hysteresis, allowing us to create real-time actuating thermal fuses that cycle between on and off rapidly.

8.
J Am Chem Soc ; 143(40): 16428-16438, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34551259

RESUMO

Virus-like particles (VLPs) are multifunctional nanocarriers that mimic the architecture of viruses. They can serve as a safe platform for specific functionalization and immunization, which provides benefits in a wide range of biomedical applications. In this work, a new generation immunophotothermal agent is developed that adjuvants photothermal ablation using a chemically modified VLP called bacteriophage Qß. The design is based on the conjugation of near-infrared absorbing croconium dyes to lysine residues located on the surface of Qß, which turns it to a powerful NIR-absorber called PhotothermalPhage. This system can generate more heat upon 808 nm NIR laser radiation than free dye and possesses a photothermal efficiency comparable to gold nanostructures, yet it is biodegradable and acts as an immunoadjuvant combined with the heat it produces. The synergistic combination of thermal ablation with the mild immunogenicity of the VLP leads to effective suppression of primary tumors, reduced lung metastasis, and increased survival time.


Assuntos
Ouro
9.
Bioconjug Chem ; 31(5): 1529-1536, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32343135

RESUMO

Icosahedral virus-like particles (VLPs) derived from bacteriophages Qß and PP7 encapsulating small-ultrared fluorescent protein (smURFP) were produced using a versatile supramolecular capsid disassemble-reassemble approach. The generated fluorescent VLPs display identical structural properties to their nonfluorescent analogs. Encapsulated smURFP shows indistinguishable photochemical properties to its unencapsulated counterpart, exhibits outstanding stability toward pH, and produces bright in vitro images following phagocytosis by macrophages. In vivo imaging allows the biodistribution to be imaged at different time points. Ex vivo imaging of intravenously administered encapsulated smURFP reveals a localization in the liver and kidneys after 2 h blood circulation and substantial elimination after 16 h of imaging, highlighting the potential application of these constructs as noninvasive in vivo imaging agents.


Assuntos
Proteínas Luminescentes/química , Imagem Molecular/métodos , Nanopartículas/química , Vírus/química , Animais , Cápsulas , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/metabolismo , Camundongos , Fagocitose , Células RAW 264.7 , Proteína Vermelha Fluorescente
10.
Supramol Chem ; 31(8): 485-490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31892768

RESUMO

The emergence of drug delivery using water stable metal-organic frameworks has elicited a lot of interest in their biocompatibility. However, few studies have been conducted on their stability in common buffers, cell media, and blood proteins. For these studies, single crystal ZIF-8 approximately 1 um in diameter were synthesized, incubated with common laboratory buffers, cell media, and serum, and then characterized by PXRD, IR, DLS, and SEM. Time-resolved SEM and PXRD demonstrate that buffers containing phosphate and bicarbonate alter the appearance and composition of ZIF-8; however, cargo inside the ZIF-8 does not appear to leak out, in most of these buffers, even when the ZIF-8 itself is displaced by phosphates. On the other hand, blood proteins in serum dissolve ZIF-8, causing trapped biomolecules to escape. The study presented here suggests that ZIF-8 can undergo dramatic surface chemistry changes that may affect the interpretation of cellular uptake and cargo release data. On the other hand, it provides a rational explanation as to how ZIF-8 neatly dissolves in vivo.

11.
J Am Chem Soc ; 140(49): 17226-17233, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30452248

RESUMO

In this Article, we show that the surface of the bacteriophage Qß is equipped with natural ligands for the synthesis of small gold nanoparticles (AuNPs). By exploiting disulfides in the protein secondary structure and the geometry formed from the capsid quaternary structure, we find that we can produce regularly arrayed patterns of ∼6 nm AuNPs across the surface of the virus-like particle. Experimental and computational analyses provide insight into the formation and stability of this composite. We further show that the entrapped genetic material can hold upward of 500 molecules of the anticancer drug Doxorubicin without leaking and without interfering with the synthesis of the AuNPs. This direct nucleation of nanoparticles on the capsid allows for exceptional conduction of photothermal energy upon nanosecond laser irradiation. As a proof of principle, we demonstrate that this energy is capable of rapidly releasing the drug from the capsid without heating the bulk solution, allowing for highly targeted cell killing in vitro.


Assuntos
Allolevivirus/química , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Células A549 , Animais , Antineoplásicos/química , Capsídeo/química , Proteínas do Capsídeo/química , Doxorrubicina/química , Portadores de Fármacos/efeitos da radiação , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ouro/efeitos da radiação , Ouro/toxicidade , Humanos , Hipertermia Induzida/métodos , Luz , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Camundongos , Tamanho da Partícula , Fototerapia/métodos , Porosidade , Estudo de Prova de Conceito , Células RAW 264.7 , RNA/química , RNA/toxicidade
12.
Bioconjug Chem ; 29(9): 2867-2883, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30152998

RESUMO

Drug delivery is commonly thought of as the performance of a drug in vivo. Rather, the process of drug delivery can comprise of the journey of the drug from manufacturer to clinic, clinic to patient, and patient to disease. Each step of the journey includes hurdles that must be overcome for the therapeutic to be successful. Recent developments in proteinaceous therapeutics have made the successful completion of this journey even more important because of the relatively fragile nature of proteins in a drug delivery context. Polymers have been demonstrated to be an effective complement to proteinaceous therapeutics throughout this journey owing to their flexibility in design and function. During transit from manufacturer to clinic, the proteinaceous drug is threatened by denaturation at elevated temperatures. Polymers can help improve the thermal stability of the drug at ambient shipping conditions, thereby reducing the need for an expensive cold chain to preserve its bioactivity. Upon arrival at the clinic, the drug must be reconstituted into a suitable formulation that can be introduced into the patient. Unfortunately, traditional drug formulations relying on oral administration are generally not suitable for proteinaceous drugs owing to the hostile environment of the stomach. Other traditional methods of drug administration-like hypodermic injections-frequently suffer from low patient compliance. Polymers have been explored to design drug formulations suitable for alternative methods of administration. Upon entry into the body, proteinaceous drugs are at risk for identification, destruction, and excretion by the immune system. Polymers can help drugs reprogram immune system response and, in some cases, elicit a synergistic immune response. The next phase of research on protein-polymer-based therapeutics encourages a holistic effort to design systems that can survive each stage of the drug delivery journey.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros/química , Proteínas/química , Humanos , Evasão da Resposta Imune , Polímeros/administração & dosagem , Proteínas/administração & dosagem
13.
Mol Pharm ; 15(8): 2984-2990, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29787282

RESUMO

Controlling the uptake of nanomaterials into phagocytes is a challenging problem. We describe an approach to inhibit the cellular uptake by macrophages and HeLa cells of nanoparticles derived from bacteriophage Qß by conjugating negatively charged terminal hexanoic acid moieties onto its surface. Additionally, we show hydrazone linkers can be installed between the surface of Qß and the terminal hexanoic acid moieties, resulting in a pH-responsive conjugate that, in acidic conditions, can release the terminal hexanoic acid moiety and allow for the uptake of the Qß nanoparticle. The installation of the "pH switch" did not change the structure-function properties of the hexanoic acid moiety and the uptake of the Qß conjugates by macrophages.


Assuntos
Allolevivirus/química , Nanoconjugados/química , Fagócitos/metabolismo , Animais , Caproatos/química , Células HeLa , Humanos , Hidrazonas/química , Concentração de Íons de Hidrogênio , Camundongos , Estrutura Molecular , Células RAW 264.7 , Eletricidade Estática , Relação Estrutura-Atividade
14.
Mol Pharm ; 15(8): 2973-2983, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29771534

RESUMO

Superoxide overproduction is known to occur in multiple disease states requiring critical care; yet, noninvasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by "click conjugating" paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced in vivo to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species-in particular, superoxide-and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for T1 contrast at low field (<3.0 T) and T2 contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for a "quenchless fluorescent" bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.


Assuntos
Meios de Contraste/química , Sondas Moleculares/química , Superóxidos/metabolismo , Vírus do Mosaico do Tabaco/química , Animais , Química Farmacêutica , Química Click , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Células HeLa , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Imagem Molecular/métodos , Nanoconjugados/química , Células RAW 264.7
15.
Small ; 13(36)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28696524

RESUMO

Spatiotemporal control of protein structure and activity in biological systems has important and broad implications in biomedical sciences as evidenced by recent advances in optogenetic approaches. Here, this study demonstrates that nanosecond pulsed laser heating of gold nanoparticles (GNP) leads to an ultrahigh and ultrashort temperature increase, coined as "molecular hyperthermia", which causes selective unfolding and inactivation of proteins adjacent to the GNP. Protein inactivation is highly dependent on both laser pulse energy and GNP size, and has a well-defined impact zone in the nanometer scale. It is anticipated that the fine control over protein structure and function enabled by this discovery will be highly enabling within a number of arenas, from probing the biophysics of protein folding/unfolding to the nanoscopic manipulation of biological systems via an optical trigger, to developing novel therapeutics for disease treatment without genetic modification.


Assuntos
Temperatura Alta , Nanopartículas Metálicas/química , Desdobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Ouro/química , Fatores de Tempo
16.
Bioconjug Chem ; 28(9): 2277-2283, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28787574

RESUMO

Proteinaceous nanomaterials and, in particular, virus-like particles (VLPs) have emerged as robust and uniform platforms that are seeing wider use in biomedical research. However, there are a limited number of bioconjugation reactions for functionalizing the capsids, and very few of those involve functionalization across the supramolecular quaternary structure of protein assemblies. In this work, we exploit the recently described dibromomaleimide moiety as part of a bioconjugation strategy on VLP Qß to break and rebridge the exposed and structurally important disulfides in good yields. Not only was the stability of the quaternary structure retained after the reaction, but the newly functionalized particles also became brightly fluorescent and could be tracked in vitro using a commercially available filter set. Consequently, we show that this highly efficient bioconjugation reaction not only introduces a new functional handle "between" the disulfides of VLPs without compromising their thermal stability but also can be used to create a fluorescent probe.


Assuntos
Allolevivirus/química , Capsídeo/química , Dissulfetos/química , Corantes Fluorescentes/química , Maleimidas/química , Nanoestruturas/química , Animais , Halogenação , Camundongos , Modelos Moleculares , Oxirredução , Células RAW 264.7
17.
Small ; 12(33): 4563-71, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27351167

RESUMO

Proteinatious nanoparticles are emerging as promising materials in biomedical research owing to their many unique properties and our interest focuses on integrating environmental responsivity into these systems. In this work, the use of a virus-like particle (VLP) derived from bacteriophage Qß as a photocaged drug delivery system is investigated. Ideally, a photocaged nanoparticle platform should be harmless and inert without activation by light yet, upon photoirradiation, should cause cell death. Approximately 530 photocleavable doxorubicin complexes are installed initially onto the surface of Qß by CuAAC reaction for photocaging therapy; however, aggregation and precipitation are found to cause cell death at higher concentrations. In order to improve solution stability, thiol-dibromomaleimide chemistry has been developed to orthogonally modify the VLP. This chemistry provides a robust method of incorporating additional functionality at the disulfides on Qß, which was used to increase the stability and solubility of the drug-loaded VLPs. As a result, the dual functionalied VLPs with polyethylene glycol and photocaged doxorubicin show not only negligible cytotoxicity before photoactivation but also highly controllable photorelease and cell killing power.


Assuntos
Allolevivirus/química , Portadores de Fármacos/química , Luz , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Fluoresceína/química , Humanos , Células MCF-7 , Maleimidas/química , Proteínas Virais/química , Vírion/química
18.
Angew Chem Int Ed Engl ; 55(36): 10691-6, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27485579

RESUMO

Metal-organic frameworks (MOFs) are promising high surface area coordination polymers with tunable pore structures and functionality; however, a lack of good size and morphological control over the as-prepared MOFs has persisted as an issue in their application. Herein, we show how a robust protein template, tobacco mosaic virus (TMV), can be used to regulate the size and shape of as-fabricated MOF materials. We were able to obtain discrete rod-shaped TMV@MOF core-shell hybrids with good uniformity, and their diameters could be tuned by adjusting the synthetic conditions, which can also significantly impact the stability of the core-shell composite. More interestingly, the virus particle underneath the MOF shell can be chemically modified using a standard bioconjugation reaction, showing mass transportation within the MOF shell.


Assuntos
Estruturas Metalorgânicas/química , Nanopartículas/química , Vírus do Mosaico do Tabaco/química , Vírion/química , Modelos Moleculares , Nanopartículas/ultraestrutura , Nanotecnologia/métodos , Tamanho da Partícula , Porosidade
19.
J Am Chem Soc ; 136(23): 8277-82, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24827031

RESUMO

The free primary hydroxyl groups in the metal-organic framework of CDMOF-2, an extended cubic structure containing units of six γ-cyclodextrin tori linked together in cube-like fashion by rubidium ions, has been shown to react with gaseous CO2 to form alkyl carbonate functions. The dynamic covalent carbon-oxygen bond, associated with this chemisorption process, releases CO2 at low activation energies. As a result of this dynamic covalent chemistry going on inside a metal-organic framework, CO2 can be detected selectively in the atmosphere by electrochemical impedance spectroscopy. The "as-synthesized" CDMOF-2 which exhibits high proton conductivity in pore-filling methanolic media, displays a ∼550-fold decrease in its ionic conductivity on binding CO2. This fundamental property has been exploited to create a sensor capable of measuring CO2 concentrations quantitatively even in the presence of ambient oxygen.

20.
Chem Sci ; 15(8): 2731-2744, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404371

RESUMO

Vaccines have saved countless lives by preventing and even irradicating infectious diseases. Commonly used subunit vaccines comprising one or multiple recombinant proteins isolated from a pathogen demonstrate a better safety profile than live or attenuated vaccines. However, the immunogenicity of these vaccines is weak, and therefore, subunit vaccines require a series of doses to achieve sufficient immunity against the pathogen. Here, we show that the biomimetic mineralization of the inert model antigen, ovalbumin (OVA), in zeolitic imidazolate framework-8 (ZIF-8) significantly improves the humoral immune response over three bolus doses of OVA (OVA 3×). Encapsulation of OVA in ZIF-8 (OVA@ZIF) demonstrated higher serum antibody titers against OVA than OVA 3×. OVA@ZIF vaccinated mice displayed higher populations of germinal center (GC) B cells and IgG1+ GC B cells as opposed to OVA 3×, indicative of class-switching recombination. We show that the mechanism of this phenomenon is at least partly owed to the metalloimmunological effects of the zinc metal as well as the sustained release of OVA from the ZIF-8 composite. The system acts as an antigen reservoir for antigen-presenting cells to traffic into the draining lymph node, enhancing the humoral response. Lastly, our model system OVA@ZIF is produced quickly at the gram scale in a laboratory setting, sufficient for up to 20 000 vaccine doses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa