Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
FASEB J ; 34(2): 2269-2286, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908008

RESUMO

SUMOylation is a dynamic, reversible, enzymatic drug-targetable post-translational modification (PTM) reaction where the Small Ubiquitin-like Modifier (SUMO) moieties are attached to proteins. This reaction regulates various biological functions like cell growth, differentiation, and it is crucial for maintaining organ homeostasis. However, the actions of SUMO in skeletal muscle pathophysiology are still not investigated. In this study, we quantified the abundance of the SUMO enzymes and determined the distribution of SUMOylated proteins along the fibers of nine different muscles. We find that skeletal muscles contain a distinctive group of SUMO enzymes and SUMOylated proteins in relation to their different metabolism, functions, and fiber type composition. In addition, before the activation of protein degradation pathways, this unique set is quickly altered in response to muscle sedentariness. Finally, we demonstrated that PAX6 acts as an upstream regulator of the SUMO conjugation reaction, which can become a potential therapeutic marker to prevent muscle diseases generated by inactivity.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Enzimas de Conjugação de Ubiquitina/biossíntese , Animais , Feminino , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Ratos , Ratos Sprague-Dawley
2.
Exp Cell Res ; 395(2): 112234, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822723

RESUMO

Skeletal muscle preservation is a dynamic process that involves constant repair and regeneration. However, the regenerative capacity of muscle cells declines in hyperglycemia. This study aimed to explore the molecular mechanisms underlying this glucotoxicity during myoblast differentiation. C2C12 cells were exposed to different concentrations of glucose, to recapitulate the development of skeletal muscles in vivo in normo- and hyperglycemic conditions. In high glucose conditions, we found significant increases in levels of total cellular reactive oxygen species (ROS) and a reorganization of SUMO enzyme transcripts and SUMOylated proteins. Furthermore, in anticipation of the ROS-induced damage to newly formed myotubes, we observed acceleration of myogenesis. Interestingly, we found a tight relationship between SUMOylation of the Histone methyltransferase SET7/9 and the maintenance of sarcomeric structures of newly formed myotubes. Finally, treatment with the antioxidant anacardic acid preserved the function and activity of myotubes generated in high-glucose conditions by interfering with both ROS and SUMO pathways. Combined, these results suggest that increased oxidative stress and modulation of SUMO reactions are key mediators of glucotoxicity and inhibition of these perturbations using antioxidants might improve muscle regeneration in hyperglycemia.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Glucose/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácidos Anacárdicos/farmacologia , Animais , Antioxidantes/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sumoilação/efeitos dos fármacos
3.
J Pathol ; 246(4): 433-446, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30066461

RESUMO

Skeletal muscle atrophy following unloading or immobilization represents a major invalidating event in bedridden patients. Among mechanisms involved in atrophy development, a controversial role is played by neuronal NOS (nNOS; NOS1), whose dysregulation at the protein level and/or subcellular distribution also characterizes other neuromuscular disorders. This study aimed to investigate unloading-induced changes in nNOS before any evidence of myofiber atrophy, using vastus lateralis biopsies obtained from young healthy subjects after a short bed-rest and rat soleus muscles after exposure to short unloading periods. Our results showed that (1) changes in nNOS subcellular distribution using NADPH-diaphorase histochemistry to detect enzyme activity were observed earlier than using immunofluorescence to visualize the protein; (2) loss of active nNOS from the physiological subsarcolemmal localization occurred before myofiber atrophy, i.e. in 8-day bed-rest biopsies and in 6 h-unloaded rat soleus, and was accompanied by increased nNOS activity in the sarcoplasm; (3) nNOS (Nos1) transcript and protein levels decreased significantly in the rat soleus after 6 h and 1 day unloading, respectively, to return to ambulatory levels after 4 and 7 days of unloading, respectively; (4) unloading-induced nNOS redistribution appeared dependent on mitochondrial-derived oxidant species, indirectly measured by tropomyosin disulfide bonds which had increased significantly in the rat soleus already after a 6 h-unloading bout; (5) activity of displaced nNOS molecules is required for translocation of the FoxO3 transcription factor to myofiber nuclei. FoxO3 nuclear localization in rat soleus increased after 6 h unloading (about four-fold the ambulatory level), whereas it did not when nNOS expression and activity were inhibited in vivo before and during 6 h unloading. In conclusion, this study demonstrates that the redistribution of active nNOS molecules from sarcolemma to sarcoplasm not only is ahead of the atrophy of unloaded myofibers, and is induced by increased production of mitochondrial superoxide anion, but also drives FoxO3 activation to initiate muscle atrophy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Atrofia Muscular/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Músculo Quadríceps/enzimologia , Sarcolema/enzimologia , Animais , Repouso em Cama , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Proteína Forkhead Box O3/metabolismo , Voluntários Saudáveis , Elevação dos Membros Posteriores , Humanos , Masculino , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , NADP/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Transporte Proteico , Músculo Quadríceps/patologia , Músculo Quadríceps/fisiopatologia , Ratos Wistar , Sarcolema/patologia , Superóxidos/metabolismo , Fatores de Tempo
4.
Mol Cell Proteomics ; 16(6): 1081-1097, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28373296

RESUMO

The small ubiquitin-like modifier (SUMO) is as a regulator of many cellular functions by reversible conjugation to a broad number of substrates. Under endogenous or exogenous perturbations, the SUMO network becomes a fine sensor of stress conditions by alterations in the expression level of SUMO enzymes and consequently changing the status of SUMOylated proteins. The diaphragm is the major inspiratory muscle, which is continuously active under physiological conditions, but its structure and function is severely affected when passively displaced for long extents during mechanical ventilation (MV). An iatrogenic condition called Ventilator-Induced Diaphragm Dysfunction (VIDD) is a major cause of failure to wean patients from ventilator support but the molecular mechanisms underlying this dysfunction are not fully understood. Using a unique experimental Intensive Care Unit (ICU) rat model allowing long-term MV, diaphragm muscles were collected in rats control and exposed to controlled MV (CMV) for durations varying between 1 and 10 days. Endogenous SUMOylated diaphragm proteins were identified by mass spectrometry and validated with in vitro SUMOylation systems. Contractile, calcium regulator and mitochondrial proteins were of specific interest due to their putative involvement in VIDD. Differences were observed in the abundance of SUMOylated proteins between glycolytic and oxidative muscle fibers in control animals and high levels of SUMOylated proteins were present in all fibers during CMV. Finally, previously reported VIDD biomarkers and therapeutic targets were also identified in our datasets which may play an important role in response to muscle weakness seen in ICU patients. Data are available via ProteomeXchange with identifier PXD006085. Username: reviewer26663@ebi.ac.uk, Password: rwcP5W0o.


Assuntos
Diafragma/metabolismo , Respiração Artificial , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Sedação Profunda , Feminino , Bloqueio Neuromuscular , Proteômica , Ratos Sprague-Dawley
5.
J Physiol ; 594(15): 4371-88, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26990577

RESUMO

KEY POINTS: Using an experimental rat intensive care unit (ICU) model, not limited by early mortality, we have previously shown that passive mechanical loading attenuates the loss of muscle mass and force-generation capacity associated with the ICU intervention. Mitochondrial dynamics have recently been shown to play a more important role in muscle atrophy than previously recognized. In this study we demonstrate that mitochondrial dynamics, as well as mitophagy, is affected by mechanosensing at the transcriptional level, and muscle changes induced by unloading are counteracted by passive mechanical loading. The recently discovered ubiquitin ligases Fbxo31 and SMART are induced by mechanical silencing, an induction that similarly is prevented by passive mechanical loading. ABSTRACT: The complete loss of mechanical stimuli of skeletal muscles, i.e. loss of external strain related to weight bearing and internal strain related to activation of contractile proteins, in mechanically ventilated, deeply sedated and/or pharmacologically paralysed intensive care unit (ICU) patients is an important factor triggering the critical illness myopathy (CIM). Using a unique experimental ICU rat model, mimicking basic ICU conditions, we have recently shown that mechanical silencing is a dominant factor triggering the preferential loss of myosin, muscle atrophy and decreased specific force in fast- and slow-twitch muscles and muscle fibres. The aim of this study is to gain improved understanding of the gene signature and molecular pathways regulating the process of mechanical activation of skeletal muscle that are affected by the ICU condition. We have focused on pathways controlling myofibrillar protein synthesis and degradation, mitochondrial homeostasis and apoptosis. We demonstrate that genes regulating mitochondrial dynamics, as well as mitophagy are induced by mechanical silencing and that these effects are counteracted by passive mechanical loading. In addition, the recently identified ubiquitin ligases Fbxo31 and SMART are induced by mechanical silencing, an induction that is reversed by passive mechanical loading. Thus, mechano-cell signalling events are identified which may play an important role for the improved clinical outcomes reported in response to the early mobilization and physical therapy in immobilized ICU patients.


Assuntos
Estado Terminal , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Animais , Feminino , Perfilação da Expressão Gênica , Imunoglobulina G/metabolismo , Unidades de Terapia Intensiva , Atrofia Muscular/metabolismo , Ventilação Pulmonar , Ratos Sprague-Dawley , Transdução de Sinais
6.
PLoS Pathog ; 9(10): e1003664, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130483

RESUMO

The large tegument proteins of herpesviruses contain N-terminal cysteine proteases with potent ubiquitin and NEDD8-specific deconjugase activities, but the function of the enzymes during virus replication remains largely unknown. Using as model BPLF1, the homologue encoded by Epstein-Barr virus (EBV), we found that induction of the productive virus cycle does not affect the total level of ubiquitin-conjugation but is accompanied by a BPLF1-dependent decrease of NEDD8-adducts and accumulation of free NEDD8. Expression of BPLF1 promotes cullin degradation and the stabilization of cullin-RING ligases (CRLs) substrates in the nucleus, while cytoplasmic CRLs and their substrates are not affected. The inactivation of nuclear CRLs is reversed by the N-terminus of CAND1, which inhibits the binding of BPLF1 to cullins and prevents efficient viral DNA replication. Targeting of the deneddylase activity to the nucleus is dependent on processing of the catalytic N-terminus by caspase-1. Inhibition of caspase-1 severely impairs viral DNA synthesis and the release of infectious virus, pointing a previously unrecognized role of the cellular response to danger signals triggered by EBV reactivation in promoting virus replication.


Assuntos
Caspase 1/metabolismo , Núcleo Celular/enzimologia , Replicação do DNA/fisiologia , DNA Viral/biossíntese , Herpesvirus Humano 4/fisiologia , Proteínas Virais Reguladoras e Acessórias/biossíntese , Replicação Viral/fisiologia , Caspase 1/genética , Linhagem Celular , Núcleo Celular/virologia , Proteínas Culina/genética , Proteínas Culina/metabolismo , Citoplasma/enzimologia , Citoplasma/metabolismo , Citoplasma/virologia , DNA Viral/genética , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Proteína NEDD8 , Proteólise , Ubiquitinas/genética , Ubiquitinas/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética
7.
Cancers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473215

RESUMO

Identifying the molecular mechanisms underlying radioresistance is a priority for the treatment of RMS, a myogenic tumor accounting for approximately 50% of all pediatric soft tissue sarcomas. We found that irradiation (IR) transiently increased phosphorylation of Akt1, Src, and Cav1 in human RD and RH30 lines. Synthetic inhibition of Akt1 and Src phosphorylation increased ROS levels in all RMS lines, promoting cellular radiosensitization. Accordingly, the elevated activation of the Akt1/Src/Cav1 pathway, as detected in two RD lines characterized by overexpression of a myristoylated Akt1 form (myrAkt1) or Cav1 (RDCav1), was correlated with reduced levels of ROS, higher expression of catalase, and increased radioresistance. We found that treatment with cholesterol-lowering drugs such as lovastatin and simvastatin promoted cell apoptosis in all RMS lines by reducing Akt1 and Cav1 levels and increasing intracellular ROS levels. Combining statins with IR significantly increased DNA damage and cell apoptosis as assessed by γ histone 2AX (γH2AX) staining and FACS analysis. Furthermore, in combination with the chemotherapeutic agent actinomycin D, statins were effective in reducing cell survival through increased apoptosis. Taken together, our findings suggest that the molecularly linked signature formed by Akt1, Src, Cav1, and catalase may represent a prognostic determinant for identifying subgroups of RMS patients with higher probability of recurrence after radiotherapy. Furthermore, statin-induced oxidative stress could represent a treatment option to improve the success of radiotherapy.

8.
PLoS Biol ; 8(11): e1000545, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21124883

RESUMO

Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors.


Assuntos
Enzimas/metabolismo , Fator de Iniciação 3 em Eucariotos/fisiologia , Receptores Notch/metabolismo , Ubiquitina/metabolismo , Linhagem Celular , Fator de Iniciação 3 em Eucariotos/genética , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Transdução de Sinais
9.
Muscle Nerve ; 47(2): 202-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23169301

RESUMO

INTRODUCTION: Viperid snakebite envenomings are characterized by muscle necrosis and a deficient regenerative response. METHODS: Homogenates from gastrocnemius muscles of mice injected with the venom of the snake Bothrops asper or with 2 tissue-damaging toxins were added to cultures of C2C12 myogenic cells. Myoblasts proliferation and fusion were assessed. Venom was detected by immunoassay in mouse muscle during the first week after injection. RESULTS: Homogenates from venom-injected muscle induced a drop in the number of proliferating myoblasts and a complete elimination of myotube formation. The inhibitory effect induced by homogenates from venom-injected mice was abrogated by preincubation of the homogenate with antivenom antibodies but not with control antibodies. This finding provides evidence that the effect is due to the action of venom in the tissue. CONCLUSIONS: Our observations suggest that traces of venom in muscle tissue might inhibit myotube formation and preclude a successful regenerative response.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Venenos de Crotalídeos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Animais , Bothrops , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Necrose/induzido quimicamente
10.
Proc Natl Acad Sci U S A ; 106(7): 2313-8, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19139406

RESUMO

The Epstein-Barr virus (EBV) nuclear antigen (EBNA)-1 is the only viral protein expressed in all EBV-carrying malignancies, but its contribution to oncogenesis has remained enigmatic. We show that EBNA-1 induces chromosomal aberrations, DNA double-strand breaks, and engagement of the DNA damage response (DDR). These signs of genomic instability are associated with the production of reactive oxygen species (ROS) and are reversed by antioxidants. The catalytic subunit of the leukocyte NADPH oxidase, NOX2/gp91(phox), is transcriptionally activated in EBNA-1-expressing cells, whereas inactivation of the enzyme by chemical inhibitors or RNAi halts ROS production and DDR. These findings highlight a novel function of EBNA-1 and a possible mechanism by which expression of this viral protein could contribute to malignant transformation and tumor progression.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Espécies Reativas de Oxigênio , Antígenos Virais/química , Antioxidantes , Domínio Catalítico , Transformação Celular Neoplásica , Dano ao DNA , Progressão da Doença , Instabilidade Genômica , Humanos , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , NADP/química , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Neoplasias/patologia , Ativação Transcricional
11.
Acta Physiol (Oxf) ; 236(3): e13869, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36002394

RESUMO

AIMS: Cardiac contractile dysfunction is prevalent in rheumatoid arthritis (RA), with an increased risk for heart failure. A hallmark of RA has increased levels of peptidyl arginine deaminases (PAD) that convert arginine to citrulline leading to ubiquitous citrullination, including in the heart. We aimed to investigate whether PAD-dependent citrullination in the heart was linked to contractile function in a mouse model of RA during the acute inflammatory phase. METHODS: We used hearts from the collagen-induced arthritis (CIA) mice, with overt arthritis, and control mice to analyze cardiomyocyte Ca2+ handling and fractional shortening, the force-Ca2+ relationship in isolated myofibrils, the levels of PAD, protein post-translational modifications, and Ca2+ handling protein. Then, we used an in vitro model to investigate the role of TNF-α in the PAD-mediated citrullination of proteins in cardiomyocytes. RESULTS: Cardiomyocytes from CIA mice displayed larger Ca2+ transients than controls, whereas cell shortening was similar in the two groups. Myofibrils from CIA hearts required higher [Ca2+ ] to reach 50% of maximum shortening, ie Ca2+ sensitivity was lower. This was associated with increased PAD2 expression and α-actin citrullination. TNF-α increased PAD-mediated citrullination which was blocked by pre-treatment with the PAD inhibitor 2-chloroacetamide. CONCLUSION: Using a mouse RA model we found evidence of impaired cardiac contractile function linked to reduced Ca2+ sensitivity, increased expression of PAD2, and citrullination of α-actin, which was triggered by TNF-α. This provides molecular and physiological evidence for acquired cardiomyopathy and a potential mechanism for RA-associated heart failure.


Assuntos
Artrite Experimental , Artrite Reumatoide , Insuficiência Cardíaca , Animais , Camundongos , Citrulinação , Citrulina/metabolismo , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Actinas , Hidrolases/metabolismo , Artrite Reumatoide/metabolismo , Artrite Experimental/metabolismo , Arginina/farmacologia
12.
Cells ; 11(18)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139434

RESUMO

In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Rabdomiossarcoma Embrionário , Animais , Criança , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Desoxiglucose , Doxorrubicina/farmacologia , Glucose , Glicólise , Hexoquinase/metabolismo , Histonas/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Lovastatina , Inibidores de MTOR , Ácido Mevalônico , Oxirredutases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rabdomiossarcoma Embrionário/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética
13.
Int J Med Microbiol ; 301(3): 213-24, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21131231

RESUMO

Helicobacter pylori is a recognized cancerogenic bacterial agent in humans, associated with gastritis, peptic ulcer, and gastric cancer. Immunoevasive and immunomodulatory mechanisms underlie the chronic persistence of the bacterium and the active proinflammatory effect of life-long H. pylori infection. In contrast to tumorigenic viruses, which frequently possess factors to influence the host ubiquitin-proteasome system (UPS), nothing is yet known about potential effects of H. pylori in this respect. The majority of H. pylori isolates worldwide possess a pathogenicity island (PAI), the cagPAI, which is involved in IL-8 production and chronic inflammation. We hypothesized that H. pylori and its cagPAI may have an influence on host cell ubiquitin pathways. The effect of H. pylori wild type and isogenic mutants lacking the complete cagPAI (or CagA) on host deubiqutinating enzymes (DUBs) was tested in coincubation experiments with human gastric epithelial cells, using DUB activity profiling. Specific DUBs were identified to be active in gastric cells. Effects on the activity and expression of DUBs were observed in H. pylori-infected cells. In particular, H. pylori caused a strong decrease in the expression and activity of the DUB USP7 which was partially cagPAI- and CagA-dependent. The reduction in USP7 in infected cells at the protein and transcript levels coincided with a decrease in the amounts of the major innate immune hub protein TRAF6 and the tumor suppressor p53. These results are a basis for further investigations into H. pylori modulators of ubiquitin-dependent cellular signaling and their biological function.


Assuntos
Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Interações Hospedeiro-Patógeno , Fator 6 Associado a Receptor de TNF/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Ubiquitina Tiolesterase/biossíntese , Células Cultivadas , Técnicas de Cocultura , Regulação para Baixo , Células Epiteliais/microbiologia , Expressão Gênica , Perfilação da Expressão Gênica , Ilhas Genômicas , Humanos , Deleção de Sequência , Peptidase 7 Específica de Ubiquitina , Fatores de Virulência/genética
14.
EMBO Rep ; 10(7): 755-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19465887

RESUMO

Ubiquitination regulates membrane events such as endocytosis, membrane trafficking and endoplasmic-reticulum-associated degradation (ERAD). Although the involvement of membrane-associated ubiquitin-conjugating enzymes and ligases in these processes is well documented, their regulation by ubiquitin deconjugases is less well understood. By screening a database of human deubiquitinating enzymes (DUBs), we have identified a putative transmembrane domain in ubiquitin-specific protease (USP)19. We show that USP19 is a tail-anchored ubiquitin-specific protease localized to the ER and is a target of the unfolded protein response. USP19 rescues the ERAD substrates cystic fibrosis transmembrane conductance regulator (CFTR)DeltaF508 and T-cell receptor-alpha (TCRalpha) from proteasomal degradation. A catalytically inactive USP19 was still able to partly rescue TCRalpha but not CFTRDeltaF508, suggesting that USP19 might also exert a non-catalytic function on specific ERAD substrates. Thus, USP19 is the first example of a membrane-anchored DUB involved in the turnover of ERAD substrates.


Assuntos
Endopeptidases/metabolismo , Retículo Endoplasmático/enzimologia , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Membrana Celular/enzimologia , Endopeptidases/química , Endopeptidases/genética , Retículo Endoplasmático/patologia , Regulação da Expressão Gênica , Humanos , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato , Proteases Específicas de Ubiquitina
15.
Toxicon ; 192: 46-56, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33460638

RESUMO

Skeletal muscle regeneration is impaired after myonecrosis induced by viperid snake venoms, but the mechanisms behind such poor regenerative outcome are not fully understood. This study compared the changes in basement membrane (BM) components in mouse skeletal muscle in two different scenarios of muscle injury: (a) injection of Bothrops asper venom, as a model of poor regeneration, and (b) injection of a myotoxic fraction (Mtx) isolated from this venom, as a model of successful regeneration. The degradation and reposition of laminin, type IV collagen and fibronectin were assessed over time by a combination of immunohistochemistry, Western blot, and real time polymerase chain reaction. Both treatments induced degradation of laminin and type IV collagen in areas of muscle necrosis since day one, however, there were differences in the pattern of degradation and reposition of these proteins along time. Overall, Mtx induced a higher synthesis of fibronectin and higher degradation of laminin at intermediate time points, together with higher levels of transcripts for the chains of the three proteins. Instead, venom induced a higher degradation of laminin and type IV collagen at early time intervals, followed by a reduced recovery of type IV collagen by 15 days. These differences in extracellular matrix degradation and remodeling between the two models could be associated to the poor muscle regeneration after myonecrosis induced by B. asper venom.


Assuntos
Músculo Esquelético , Animais , Membrana Basal , Bothrops , Venenos de Crotalídeos/toxicidade , Camundongos , Modelos Teóricos , Regeneração
16.
Antioxidants (Basel) ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34573075

RESUMO

The kynurenine pathway (KP) is gaining attention in several clinical fields. Recent studies show that physical exercise offers a therapeutic way to improve ratios of neurotoxic to neuroprotective KP metabolites. Antioxidant supplementation can blunt beneficial responses to physical exercise. We here studied the effects of endurance training in the form of sprint interval training (SIT; three sessions of 4-6 × 30 s cycling sprints per week for three weeks) in elderly (~65 years) men exposed to either placebo (n = 9) or the antioxidants vitamin C (1 g/day) and E (235 mg/day) (n = 11). Blood samples and muscle biopsies were taken under resting conditions in association with the first (untrained state) and last (trained state) SIT sessions. In the placebo group, the blood plasma level of the neurotoxic quinolinic acid was lower (~30%) and the neuroprotective kynurenic acid to quinolinic acid ratio was higher (~50%) in the trained than in the untrained state. Moreover, muscle biopsies showed a training-induced increase in kynurenine aminotransferase (KAT) III in the placebo group. All these training effects were absent in the vitamin-treated group. In conclusion, KP metabolism was shifted towards neuroprotection after three weeks of SIT in elderly men and this shift was blocked by antioxidant treatment.

17.
Sci Adv ; 7(36): eabi6856, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516913

RESUMO

Interindividual variability in drug response constitutes a major concern in pharmacotherapy. While polymorphisms in genes involved in drug disposition have been extensively studied, drug target variability remains underappreciated. By mapping the genomic variability of all human drug target genes onto high-resolution crystal structures of drug target complexes, we identified 1094 variants localized within 6 Å of drug-binding pockets and directly affecting their geometry, topology, or physicochemical properties. We experimentally show that binding site variants affect pharmacodynamics with marked drug- and variant-specific differences. In addition, we demonstrate that a common BCHE variant confers resistance to tacrine and rivastigmine, which can be overcome by the use of derivatives based on squaric acid scaffolds or tryptophan conjugation. These findings underscore the importance of genetic drug target variability and demonstrate that integration of genomic data and structural information can inform personalized drug selection and genetically guided drug development to overcome resistance.

18.
Cancer Lett ; 505: 1-12, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33610729

RESUMO

The aim of this work was to investigate whether Caveolin-1 (Cav-1), a membrane scaffolding protein widely implicated in cancer, may play a role in radiation response in rhabdomyosarcoma (RMS), a pediatric soft tissue tumor. For this purpose, we employed human RD cells in which Cav-1 expression was stably increased via gene transfection. After radiation treatment, we observed that Cav-1 limited cell cycle arrest in the G2/M phase and enhanced resistance to cell senescence and apoptosis via reduction of p21Cip1/Waf1, p16INK4a and Caspase-3 cleavage. After radiotherapy, Cav-1-mediated cell radioresistance was characterized by low accumulation of H2AX foci, as confirmed by Comet assay, marked neutralization of reactive oxygen species (ROS) and enhanced DNA repair via activation of ATM, Ku70/80 complex and DNA-PK. We found that Cav-1-overexpressing RD cells, already under basal conditions, had higher glutathione (GSH) content and greater catalase expression, which conferred protection against acute treatment with hydrogen peroxide. Furthermore, pre-treatment of Cav-1-overexpressing cells with PP2 or LY294002 compounds restored the sensitivity to radiation treatment, indicating a role for Src-kinases and Akt pathways in Cav-1-mediated radioresistance. These findings were confirmed using radioresistant RD and RH30 lines generated by hypofractionated radiotherapy protocol, which showed marked increase of Cav-1, catalase and Akt, and sensitivity to PP2 and LY294002 treatment. In conclusion, these data suggest that concerted activity of Cav-1 and catalase, in cooperation with activation of Src-kinase and Akt pathways, may represent a network of vital mechanisms that allow irradiated RMS cells to evade cell death induced by oxidative stress and DNA damage.


Assuntos
Caveolina 1/fisiologia , Reparo do DNA , Estresse Oxidativo , Tolerância a Radiação , Rabdomiossarcoma/radioterapia , Apoptose , Linhagem Celular Tumoral , Humanos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Quinases da Família src/fisiologia
19.
Sci Transl Med ; 13(603)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290055

RESUMO

Pharmacogenomics is a key component of personalized medicine that promises safer and more effective drug treatment by individualizing drug choice and dose based on genetic profiles. In clinical practice, genetic biomarkers are used to categorize patients into *-alleles to predict CYP450 enzyme activity and adjust drug dosages accordingly. However, this approach leaves a large part of variability in drug response unexplained. Here, we present a proof-of-concept approach that uses continuous-scale (instead of categorical) assignments to predict enzyme activity. We used full CYP2D6 gene sequences obtained with long-read amplicon-based sequencing and cytochrome P450 (CYP) 2D6-mediated tamoxifen metabolism data from a prospective study of 561 patients with breast cancer to train a neural network. The model explained 79% of interindividual variability in CYP2D6 activity compared to 54% with the conventional *-allele approach, assigned enzyme activities to known alleles with previously reported effects, and predicted the activity of previously uncharacterized combinations of variants. The results were replicated in an independent cohort of tamoxifen-treated patients (model R 2 adjusted = 0.66 versus *-allele R 2 adjusted = 0.35) and a cohort of patients treated with the CYP2D6 substrate venlafaxine (model R 2 adjusted = 0.64 versus *-allele R 2 adjusted = 0.55). Human embryonic kidney cells were used to confirm the effect of five genetic variants on metabolism of the CYP2D6 substrate bufuralol in vitro. These results demonstrate the advantage of a continuous scale and a completely phased genotype for prediction of CYP2D6 enzyme activity and could potentially enable more accurate prediction of individual drug response.


Assuntos
Citocromo P-450 CYP2D6 , Preparações Farmacêuticas , Alelos , Citocromo P-450 CYP2D6/genética , Genótipo , Humanos , Estudos Prospectivos , Tamoxifeno
20.
Antioxidants (Basel) ; 9(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957522

RESUMO

Sprint interval training (SIT) has emerged as a time-efficient training regimen for young individuals. Here, we studied whether SIT is effective also in elderly individuals and whether the training response was affected by treatment with the antioxidants vitamin C and E. Recreationally active elderly (mean age 65) men received either vitamin C (1 g/day) and vitamin E (235 mg/day) or placebo. Training consisted of nine SIT sessions (three sessions/week for three weeks of 4-6 repetitions of 30-s all-out cycling sprints) interposed by 4 min rest. Vastus lateralis muscle biopsies were taken before, 1 h after, and 24 h after the first and last SIT sessions. At the end of the three weeks of training, SIT-induced changes in relative mRNA expression of reactive oxygen/nitrogen species (ROS)- and mitochondria-related proteins, inflammatory mediators, and the sarcoplasmic reticulum Ca2+ channel, the ryanodine receptor 1 (RyR1), were blunted in the vitamin treated group. Western blots frequently showed a major (>50%) decrease in the full-length expression of RyR1 24 h after SIT sessions; in the trained state, vitamin treatment seemed to provide protection against this severe RyR1 modification. Power at exhaustion during an incremental cycling test was increased by ~5% at the end of the training period, whereas maximal oxygen uptake remained unchanged; vitamin treatment did not affect these measures. In conclusion, treatment with the antioxidants vitamin C and E blunts SIT-induced cellular signaling in skeletal muscle of elderly individuals, while the present training regimen was too short or too intense for the changes in signaling to be translated into a clear-cut change in physical performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa