Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(6): 2473-2490, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39133639

RESUMO

PURPOSE: This study aims to map the transmit magnetic field ( B 1 + $$ {B}_1^{+} $$ ) in the human body at 7T using MR fingerprinting (MRF), with a focus on achieving high accuracy and precision across a large dynamic range, particularly at low flip angles (FAs). METHODS: A FLASH-based MRF sequence (B1-MRF) with high B 1 + $$ {B}_1^{+} $$ sensitivity was developed. Phantom and in vivo abdominal imaging were performed at 7T, and the results were compared with established reference methods, including a slow but precise preparation-based method (PEX), saturated TurboFLASH (satTFL), actual flip angle imaging (AFI) and Bloch-Siegert shift (BSS). RESULTS: The MRF signal curve was highly sensitive to B 1 + $$ {B}_1^{+} $$ , while T1 sensitivity was comparatively low. The phantom experiment showed good agreement of B 1 + $$ {B}_1^{+} $$ to PEX for a T1 range of 204-1691 ms evaluated at FAs from 0° to 70°. Compared to the references, a dynamic range increase larger than a factor of two was determined experimentally. In vivo liver scans showed a strong correlation between B1-MRF, satTFL, and RPE-AFI in a low body mass index (BMI) subject (18.1 kg/m2). However, in larger BMI subjects (≥25.5 kg/m2), inconsistencies were observed in low B 1 + $$ {B}_1^{+} $$ regions for satTFL and RPE-AFI, while B1-MRF still provided consistent results in these regions. CONCLUSION: B1-MRF provides accurate and precise B 1 + $$ {B}_1^{+} $$ maps over a wide range of FAs, surpassing the capabilities of existing methods in the FA range < 60°. Its enhanced sensitivity at low FAs is advantageous for various applications requiring precise B 1 + $$ {B}_1^{+} $$ estimates, potentially advancing the frontiers of ultra-high field (UHF) body imaging at 7T and beyond.


Assuntos
Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto , Feminino , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Reprodutibilidade dos Testes , Campos Magnéticos , Abdome/diagnóstico por imagem , Adulto Jovem
2.
Phys Med ; 105: 102514, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36608390

RESUMO

PURPOSE: Assess and optimise acquisition parameters for continuous cardiac Magnetic Resonance Fingerprinting (MRF). METHODS: Different acquisition schemes (flip angle amplitude, lobe size, T2-preparation pulses) for cardiac MRF were assessed in simulations and phantom and demonstrated in one healthy volunteer. Three different experimental designs were evaluated using central composite and fractional factorial designs. Relative errors for T1 and T2 were calculated for a wide range of realistic T1 and T2 value combinations. The effect of different designs on the accuracy of T1 and T2 was assessed using response surface modelling and Cohen's f calculations. RESULTS: Larger flip angle amplitudes lead to an improvement of T2 accuracy and precision for simulations and phantom experiments. Similar effects could also be shown qualitatively in in-vivo scans. Accuracy and precision of T1 were robust to different design parameters with improved values for faster flip angle variation. Cohen's f showed that T2-preparation pulses influence the accuracy of T2. The number of pulses used is the most important parameter. Without T2-preparation pulses, RMSE were 3.0 ± 8.09 % for T1 and 16.24 ± 14.47 % for T2. Using those pulses reduced the RMSE to 2.3 ± 8.4 % for T1 and 14.11 ± 13.46 % for T2. Nonetheless, even if the improvement is significant, RMSE are still too high for reliable quantification. CONCLUSION: In contrast to previous study using triggered MRF sequences using < 30° flip angles, large flip angle amplitudes led to better results for continuous cardiac MRF sequences. T2-preparation pulse can improve the accuracy of T2 estimation but lead to longer scan times.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa