Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 611(7935): 284-288, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289341

RESUMO

Single-atom catalysts1 make exceptionally efficient use of expensive noble metals and can bring out unique properties1-3. However, applications are usually compromised by limited catalyst stability, which is due to sintering3,4. Although sintering can be suppressed by anchoring the metal atoms to oxide supports1,5,6, strong metal-oxygen interactions often leave too few metal sites available for reactant binding and catalysis6,7, and when exposed to reducing conditions at sufficiently high temperatures, even oxide-anchored single-atom catalysts eventually sinter4,8,9. Here we show that the beneficial effects of anchoring can be enhanced by confining the atomically dispersed metal atoms on oxide nanoclusters or 'nanoglues', which themselves are dispersed and immobilized on a robust, high-surface-area support. We demonstrate the strategy by grafting isolated and defective CeOx nanoglue islands onto high-surface-area SiO2; the nanoglue islands then each host on average one Pt atom. We find that the Pt atoms remain dispersed under both oxidizing and reducing environments at high temperatures, and that the activated catalyst exhibits markedly increased activity for CO oxidation. We attribute the improved stability under reducing conditions to the support structure and the much stronger affinity of Pt atoms for CeOx than for SiO2, which ensures the Pt atoms can move but remain confined to their respective nanoglue islands. The strategy of using functional nanoglues to confine atomically dispersed metals and simultaneously enhance their reactivity is general, and we anticipate that it will take single-atom catalysts a step closer to practical applications.

2.
J Am Chem Soc ; 146(6): 3773-3784, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301281

RESUMO

A longstanding challenge in catalysis by noble metals has been to understand the origin of enhancements of rates of hydrogen transfer that result from the bonding of oxygen near metal sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. Reaction of the clusters with ethylene and H2 followed by O2 led to the onset of catalytic activity as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-fold increase in the catalytic reaction rate, which is explained by the electron-withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference that reductive elimination is rate-determining. Electronic-structure calculations demonstrate an additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from one involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions with H2 and, alternatively, with D2 on the cluster incorporating the dioxygen ligands and is a consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction of H2 with D2 to give HD. We posit that the mechanism involving bridging hydride ligands facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis by oxide-supported noble metals.

3.
J Am Chem Soc ; 145(5): 2911-2929, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715296

RESUMO

Catalysts for hydroformylation of ethene were prepared by grafting Rh into nests of ≡SiOZn-OH or ≡SiOCo-OH species prepared in dealuminated BEA zeolite. X-ray absorption spectra and infrared spectra of adsorbed CO were used to characterize the dispersion of Rh. The Rh dispersion was found to increase markedly with increasing M/Rh (M = Zn or Co) ratio; further increases in Rh dispersion occurred upon use for ethene hydroformylation catalysis. The turnover frequency for ethene hydroformylation measured for a fixed set of reaction conditions increased with the fraction of atomically dispersed Rh. The ethene hydroformylation activity is 15.5-fold higher for M = Co than for M = Zn, whereas the propanal selectivity is slightly greater for the latter catalyst. The activity of the Co-containing catalyst exceeds that of all previously reported Rh-containing bimetallic catalysts. The rates of ethene hydroformylation and ethene hydrogenation exhibit positive reaction orders in ethene and hydrogen but negative orders in carbon monoxide. In situ IR spectroscopy and the kinetics of the catalytic reactions suggest that ethene hydroformylation is mainly catalyzed by atomically dispersed Rh that is influenced by Rh-M interactions, whereas ethene hydrogenation is mainly catalyzed by Rh nanoclusters. In situ IR spectroscopy also indicates that the ethene hydroformylation is rate limited by formation of propionyl groups and by their hydrogenation, a conclusion supported by the measured H/D kinetic isotope effect. This study presents a novel method for creating highly active Rh-containing bimetallic sites for ethene hydroformylation and provides new insights into the mechanism and kinetics of this process.

4.
Small ; 19(26): e2207272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942900

RESUMO

Atomically dispersed metal catalysts offer the advantages of efficient metal utilization and high selectivities for reactions of technological importance. Such catalysts have been suggested to be strong candidates for dry reforming of methane (DRM), offering prospects of high selectivity for synthesis gas without coke formation, which requires ensembles of metal sites and is a challenge to overcome in DRM catalysis. However, investigations of the structures of isolated metal sites on metal oxide supports under DRM conditions are lacking, and the catalytically active sites remain undetermined. Data characterizing the DRM reaction-driven structural evolution of a cerium oxide-supported catalyst, initially incorporating atomically dispersed platinum, and the corresponding changes in catalyst performance are reported. X-ray absorption and infrared spectra show that the reduction and agglomeration of isolated cationic platinum atoms to form small platinum clusters/nanoparticles are necessary for DRM activity. Density functional theory calculations of the energy barriers for methane dissociation on atomically dispersed platinum and on platinum clusters support these observations. The results emphasize the need for in-operando experiments to assess the active sites in such catalysts. The inferences about the catalytically active species are suggested to pertain to a broad class of catalytic conversions involving the rate-limiting dissociation of light alkanes.

5.
J Am Chem Soc ; 144(30): 13874-13887, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35854402

RESUMO

Catalysts composed of platinum dispersed on zeolite supports are widely applied in industry, and coking and sintering of platinum during operation under reactive conditions require their oxidative regeneration, with the platinum cycling between clusters and cations. The intermediate platinum species have remained only incompletely understood. Here, we report an experimental and theoretical investigation of the structure, bonding, and local environment of cationic platinum species in zeolite ZSM-5, which are key intermediates in this cycling. Upon exposure of platinum clusters to O2 at 700 °C, oxidative fragmentation occurs, and Pt2+ ions are stabilized at six-membered rings in the zeolite that contain paired aluminum sites. When exposed to CO under mild conditions, these Pt2+ ions form highly uniform platinum gem-dicarbonyls, which can be converted in H2 to Ptδ+ monocarbonyls. This conversion, which weakens the platinum-zeolite bonding, is a first step toward platinum migration and aggregation into clusters. X-ray absorption and infrared spectra provide evidence of the reductive and oxidative transformations in various gas environments. The chemistry is general, as shown by the observation of platinum gem-dicarbonyls in several commercially used zeolites (ZSM-5, Beta, mordenite, and Y).

6.
Acc Chem Res ; 54(8): 1982-1991, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33843190

RESUMO

ConspectusMetal-organic frameworks (MOFs) are a huge, rapidly growing class of crystalline, porous materials that consist of inorganic nodes linked by organic struts. Offering the advantages of thermal stability combined with high densities of accessible reactive sites, some MOFs are good candidate materials for applications in catalysis and separations. Such MOFs include those with nodes that are metal oxide clusters (e.g., Zr6O8, Hf6O8, and Zr12O22) and long rods (e.g., [Al(OH)]n). These nanostructured metal oxides are often compared with bulk metal oxides, but they are in essence different because their structures are not the same and because the MOFs have a high degree of uniformity, offering the prospect of a deep understanding of reactivity that is barely attainable for most bulk metal oxides because of their surface heterogeneity. This prospect is being realized as it has become evident that adventitious components on MOF node surfaces, besides the linkers, are crucial. These ligands arise from modulators, solvents, or products of solvent decomposition in MOF synthesis solutions, and because they are minor components that are often irregularly placed on defects, they may not show up in X-ray diffraction (XRD) crystal structures. Hydroxyl groups on the nodes (like those on bulk metal oxides) are regarded as native functional groups arising from solvent water, but they may barely be present initially, with common ligands instead being formate and acetate formed from modulators formic acid and acetic acid. (Formate also arises from the decomposition of dimethylformamide (DMF) solvent.) Replacement and control of the node ligands is facilitated by postsynthesis reactions (e.g., with alcohols or aqueous HCl/H2SO4 solutions) or as a result of high-temperature decomposition. In catalysis, adventitious node ligands can be (a) reaction inhibitors that block active sites on the nodes (e.g., formate blocking Zr, Hf, or Al Lewis acid sites); (b) reaction intermediates (e.g., ethoxy in ethanol dehydration); or (c) active sites themselves (e.g., terminal OH groups in tert-butyl alcohol (TBA) dehydration). Surprisingly, in view of the catalytic importance of such ligands on bulk metal oxides, their subtle chemistry on MOF nodes is only recently being determined. We describe (1) methods for identifying and quantifying node ligands (especially by IR spectroscopy and by 1H NMR spectroscopy of MOFs digested in NaOH/D2O solutions); (2) node ligand surface chemistry expressed as reaction networks; (3) catalysis, with mechanisms and energetics determined by density functional theory (DFT) and spectroscopy; and (4) MOF unzipping by reactions of linker carboxylate ligands with reactants such as alcohols that break node-linker bonds, a cause of catalyst deactivation and also an indicator of node-linker bond strength and MOF stability.

7.
Chem Rev ; 120(21): 11956-11985, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33104349

RESUMO

When metals in supported catalysts are atomically dispersed, they are usually cationic and bonded chemically to supports. Investigations of noble metals in this class are growing rapidly, leading to discoveries of catalysts with new properties. Characterization of these materials is challenging because the metal atoms reside on surfaces that are typically nonuniform in composition and structure. We posit that understanding of structures and catalytic properties of these materials is emerging most strongly from investigations of structurally uniform catalysts (metal atoms dispersed on crystalline supports) which can be characterized incisively with atomic-resolution electron microscopy, X-ray absorption spectroscopy, and infrared spectroscopy, bolstered by density functional theory. We assess the literature of such catalysts supported on zeotype materials, metal-organic frameworks, and covalent organic frameworks. Assessing characterization, reactivity, and catalytic performance of catalysts for oxidation, hydrogenation, the water-gas shift reaction, and others, we consider metal-support interactions and ligand effects for various metal-support combinations, evaluating the degree of structural uniformity of exemplary catalysts and summarizing structure-reactivity and structure-catalytic property relationships.

8.
J Am Chem Soc ; 143(50): 21364-21378, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34881868

RESUMO

Atomically dispersed noble metal catalysts have drawn wide attention as candidates to replace supported metal clusters and metal nanoparticles. Atomic dispersion can offer unique chemical properties as well as maximum utilization of the expensive metals. Addition of a second metal has been found to help reduce the size of Pt ensembles in bimetallic clusters; however, the stabilization of isolated Pt atoms in small nests of nonprecious metal atoms remains challenging. We now report a novel strategy for the design, synthesis, and characterization of a zeolite-supported propane dehydrogenation catalyst that incorporates predominantly isolated Pt atoms stably bonded within nests of Zn atoms located within the nanoscale pores of dealuminated zeolite Beta. The catalyst is stable in long-term operation and exhibits high activity and high selectivity to propene. Atomic resolution images, bolstered by X-ray absorption spectra, demonstrate predominantly atomic dispersion of the Pt in the nests and, with complementary infrared and nuclear magnetic resonance spectra, determine a structural model of the nested Pt.

9.
J Am Chem Soc ; 143(31): 12165-12174, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314584

RESUMO

Recent work has exploited the ability of metal-organic frameworks (MOFs) to isolate Fe sites that mimic the structures of sites in enzymes that catalyze selective oxidations at low temperatures, opening new pathways for the valorization of underutilized feedstocks such as methane. Questions remain as to whether the radical-rebound mechanism commonly invoked in enzymatic and homogeneous systems also applies in these rigid-framework materials, in which resisting the overoxidation of desired products is a major challenge. We demonstrate that MOFs bearing Fe(II) sites within Fe3-µ3-oxo nodes active for conversion of CH4 + N2O mixtures (368-408 K) require steps beyond the radical-rebound mechanism to protect the desired CH3OH product. Infrared spectra and density functional theory show that CH3OH(g) is stabilized as Fe(III)-OCH3 groups on the MOF via hydrogen atom transfer with Fe(III)-OH groups, eliminating water. Consequently, upon addition of a protonic zeolite in inter- and intrapellet mixtures with the MOF, we observed increases in CH3OH selectivity with increasing ratio and proximity of zeolitic H+ to MOF-based Fe(II) sites, as methanol is protected within the zeolite. We infer from the data that CH3OH(g) is formed via the radical-rebound mechanism on Fe(II) sites but that subsequent transport and dehydration steps are required to protect CH3OH(g) from overoxidation. The results demonstrate that the radical-rebound mechanism commonly invoked in this chemistry is insufficient to explain the reactivity of these systems, that the selectivity-controlling steps involve both chemical and physical rate phenomena, as well as offering a strategy to mitigate overoxidation in these and similar systems.

10.
J Am Chem Soc ; 143(48): 20144-20156, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806881

RESUMO

Atomically dispersed supported metal catalysts offer new properties and the benefits of maximized metal accessibility and utilization. The characterization of these materials, however, remains challenging. Using atomically dispersed platinum supported on crystalline MgO (chosen for its well-defined bonding sites) as a prototypical example, we demonstrate how systematic density functional theory calculations for assessing all the potentially stable platinum sites, combined with automated analysis of extended X-ray absorption fine structure (EXAFS) spectra, leads to unbiased identification of isolated, surface-enveloped platinum cations as the catalytic species for CO oxidation. The catalyst has been characterized by atomic-resolution imaging and EXAFS and high-energy resolution fluorescence detection X-ray absorption near edge spectroscopy. The proposed platinum sites are in agreement with experiment. This theory-guided workflow leads to rigorously determined structural models and provides a more detailed picture of the structure of the catalytically active site than what is currently possible with conventional EXAFS analyses. As this approach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that it will be of broad interest to the materials characterization and catalysis communities.

11.
Small ; 17(16): e2004665, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33185034

RESUMO

When metal nanoparticles on supports are made smaller and smaller-to the limit of atomic dispersion-they become cationic and take on new catalytic properties that are only recently being discovered. The synthesis of these materials is reviewed, including their structure characterization-especially by atomic-resolution electron microscopy and X-ray absorption and infrared spectroscopies-and relationships between structure and catalyst performance, for reactions including hydrogenations, oxidations, and the water gas shift. Structure determination is challenging because of the intrinsic nonuniformity of the support surfaces-and therefore the structures on them-but fundamental understanding has advanced rapidly, benefiting from nearly uniform catalysts consisting of metals on well-defined-crystalline-supports and their characterization by spectroscopy and microscopy. Recent advances in atomic-resolution electron microscopy have spurred the field, providing stunning images and deep insights into structure. The iridium catalysts have typically been made from organoiridium precursors, opening the way to understanding and control of the metal-support bonding and ligands on the metal, including catalytic reaction intermediates. Platinum catalysts are usually made with less precision, from salt precursors, but they catalyze a wider array of reactions than the iridium, typically being stable at higher temperatures and seemingly offering rich prospect for discovery of new catalysts.

12.
Chem Soc Rev ; 49(10): 2937-3004, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32407432

RESUMO

Catalytic conversion of CO2 to produce fuels and chemicals is attractive in prospect because it provides an alternative to fossil feedstocks and the benefit of converting and cycling the greenhouse gas CO2 on a large scale. In today's technology, CO2 is converted into hydrocarbon fuels in Fischer-Tropsch synthesis via the water gas shift reaction, but processes for direct conversion of CO2 to fuels and chemicals such as methane, methanol, and C2+ hydrocarbons or syngas are still far from large-scale applications because of processing challenges that may be best addressed by the discovery of improved catalysts-those with enhanced activity, selectivity, and stability. Core-shell structured catalysts are a relatively new class of nanomaterials that allow a controlled integration of the functions of complementary materials with optimised compositions and morphologies. For CO2 conversion, core-shell catalysts can provide distinctive advantages by addressing challenges such as catalyst sintering and activity loss in CO2 reforming processes, insufficient product selectivity in thermocatalytic CO2 hydrogenation, and low efficiency and selectivity in photocatalytic and electrocatalytic CO2 hydrogenation. In the preceding decade, substantial progress has been made in the synthesis, characterization, and evaluation of core-shell catalysts for such potential applications. Nonetheless, challenges remain in the discovery of inexpensive, robust, regenerable catalysts in this class. This review provides an in-depth assessment of these materials for the thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 into synthesis gas and valuable hydrocarbons.

13.
J Am Chem Soc ; 142(17): 8044-8056, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32249577

RESUMO

Metal-organic frameworks (MOFs) have drawn wide attention as candidate catalysts, but some essential questions about their nature and performance have barely been addressed. (1) How do OH groups on MOF nodes act as catalytic sites? (2) What are the relationships among these groups, node defects, and MOF stability, and how do reaction conditions influence them? (3) What are the interplays between catalytic properties and transport limitations? To address these questions, we report an experimental and theoretical investigation of the catalytic dehydration of tert-butyl alcohol (TBA) used to probe the activities of OH groups of Zr6O8 nodes in the MOFs UiO-66 and MOF-808, which have different densities of vacancy sites and different pore sizes. The results show that (1) terminal node OH groups are formed as formate and/or acetate ligands present initially on the nodes react with TBA to form esters, (2) these OH groups act as catalytic sites for TBA dehydration to isobutylene, and (3) TBA also reacts to break node-linker bonds to form esters and thereby unzip the MOFs. The small pores of UiO-66 limit the access of TBA and the reaction with the formate/acetate ligands bound within the pores, whereas the larger pores of MOF-808 facilitate transport and favor reaction in the MOF interior. However, after removal of the formate and acetate ligands by reaction with methanol to form esters, interior active sites in UiO-66 become accessible for the reaction of TBA, with the activity depending on the density of defect sites with terminal OH groups. The number of vacancies on the nodes is important in determining a tradeoff between the catalytic activity of a MOF and its resistance to unzipping. Computations at the level of density functional theory show how the terminal OH groups on node vacancies act as Brønsted bases, facilitating TBA dehydration via a carbocation intermediate in an E1 mechanism; the calculations further illuminate the comparable chemistry of the unzipping.

14.
J Am Chem Soc ; 142(26): 11474-11485, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496792

RESUMO

Zeolites are widely applied supports for metal catalysts, but molecular sieves with comparable structures-silicoaluminophosphates (SAPOs)-have drawn much less attention and been overlooked as supports for atomically dispersed metals. Now, we report SAPO-37 as a support for atomically dispersed rhodium in rhodium diethylene complexes, made by the reaction of Rh(η2-C2H4)2(acetylacetonate) with the support and anchored by two Rh-O bonds at framework tetrahedral sites, as shown by infrared and extended X-ray absorption fine structure spectra. The ethylene ligands were readily replaced with CO, giving sharp νCO bands indicating highly uniform supported species. A comparison of the spectra with those of comparable rhodium complexes on zeolite HY shows that the SAPO- and zeolite-supported complexes are isostructural, providing an unmatched opportunity for determining support effects in catalysis. The two catalysts had similar initial room-temperature activities per Rh atom for ethylene conversion in the presence of H2, but the SAPO-supported catalyst was selective for ethylene hydrogenation and the zeolite-supported catalyst selective for ethylene dimerization; correspondingly, the catalyst on the SAPO was more stable than that on the zeolite during operation in a flow reactor.

15.
J Am Chem Soc ; 141(9): 4010-4015, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736668

RESUMO

Although essentially molecular noble metal species provide active sites and highly tunable platforms for the design of supported catalysts, the susceptibility of the metals to reduction and aggregation and the consequent loss of catalytic activity and selectivity limit opportunities for their application. Here, we demonstrate a new construct to stabilize supported molecular noble-metal catalysts, taking advantage of sterically bulky ligands on the metal that serve as surrogate supports and isolate the active sites under conditions involving steady-state catalytic turnover in a reducing environment. The result is demonstrated with an iridium pair-site catalyst incorporating P-bridging calix[4]arene ligands dispersed on siliceous supports, chosen as prototypes because they offer weakly interacting surfaces on which metal aggregation is prone to occur. This catalyst was used for the hydrogenation of ethylene in a flow reactor. Atomic-resolution imaging of the Ir centers and spectra of the catalyst before and after use show that the metals resisted aggregation and deactivation, remaining atomically dispersed and accessible for catalysis. This strategy thus allows the stabilization of the catalysts even when they are weakly anchored to supports.

16.
J Am Chem Soc ; 141(21): 8482-8488, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31063372

RESUMO

Supported rhodium nanoparticles (NPs) are well-known for catalyzing methanation in CO2 hydrogenation. Now we demonstrate that the selectivity in this process can be optimized for CO production by choice of molecular sieve crystals as supports. The NPs are enveloped within the crystals with controlled nanopore environments that allow tuning of the catalytic selectivity to minimize methanation and favor the reverse water-gas shift reaction. Pure silica MFI (S-1)-fixed rhodium NPs exhibited maximized CO selectivity at high CO2 conversions, whereas aluminosilicate MFI zeolite-supported rhodium NPs displayed high methane selectivity under the equivalent conditions. Strong correlations were observed between the nanoporous environment and catalytic selectivity, indicating that S-1 minimizes hydrogen spillover and favors fast desorption of CO to limit deep hydrogenation. Materials in this class appear to offer appealing opportunities for tailoring selective supported catalysts for a variety of reactions.

17.
J Am Chem Soc ; 141(45): 18142-18151, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31670511

RESUMO

Metal organic frameworks (MOFs), with their crystalline, porous structures, can be synthesized to incorporate a wide range of catalytically active metals in tailored surroundings. These materials have potential as catalysts for conversion of light alkanes, feedstocks available in large quantities from shale gas that are changing the economics of manufacturing commodity chemicals. Mononuclear high-spin (S = 2) Fe(II) sites situated in the nodes of the MOF MIL-100(Fe) convert propane via dehydrogenation, hydroxylation, and overoxidation pathways in reactions with the atomic oxidant N2O. Pair distribution function analysis, N2 adsorption isotherms, X-ray diffraction patterns, and infrared and Raman spectra confirm the single-phase crystallinity and stability of MIL-100(Fe) under reaction conditions (523 K in vacuo, 378-408 K C3H8 + N2O). Density functional theory (DFT) calculations illustrate a reaction mechanism for the formation of 2-propanol, propylene, and 1-propanol involving the oxidation of Fe(II) to Fe(III) via a high-spin Fe(IV)═O intermediate. The speciation of Fe(II) and Fe(III) in the nodes and their dynamic interchange was characterized by in situ X-ray absorption spectroscopy and ex situ Mössbauer spectroscopy. The catalytic relevance of Fe(II) sites and the number of such sites were determined using in situ chemical titrations with NO. N2 and C3H6 production rates were found to be first-order in N2O partial pressure and zero-order in C3H8 partial pressure, consistent with DFT calculations that predict the reaction of Fe(II) with N2O to be rate determining. DFT calculations using a broken symmetry method show that Fe-trimer nodes affecting reaction contain antiferromagnetically coupled iron species, and  highlight the importance of stabilizing high-spin (S = 2) Fe(II) species for effecting alkane oxidation at low temperatures (<408 K).

18.
Inorg Chem ; 58(21): 14338-14348, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31638393

RESUMO

Although oxygen is a common ligand in supported metal catalysts, its coordination has been challenging to elucidate. We now characterize a diiridium complex that has been previously shown by X-ray diffraction crystallography to incorporate a µ-η1:η1-peroxo ligand. We observe markedly enhanced intensity at 788 cm-1 in the Raman spectrum of this complex, which is a consequence of bonding of the peroxo ligand but does not shift upon 18O labeling. Electronic structure calculations at the density functional theory level suggest that this increase in Raman intensity results from bands associated with rocking of CH2 substituents directly attached to P(Ph)2 groups coupling with the O-O band. These results provide part of the foundation for understanding oxygen ligands on a silica-supported tetrairidium carbonyl cluster stabilized with bulky electron-donating phosphine ligands [p-tert-butyl-calix[4]arene(OPr)3(OCH2PPh2) (Ph = phenyl; Pr = propyl)]. Reaction of the cluster with O2 also led to the growing in of a Raman band at 788 cm-1, similar to that in the diiridium complex and also assigned to the bonding of a bridging peroxo ligand. Infrared spectra recorded as the supported cluster reacted in sequential exposures to (i) H2, (ii) O2, (iii) H2, and (iv) CO indicate that two bridging peroxo ligands were bonded irreversibly per tetrairidium cluster, replacing bridging carbonyl ligands without altering either the cluster frame or the phosphine ligands. X-ray absorption near edge and infrared spectra include isosbestic points signifying a stoichiometrically simple reaction of the cluster with O2, and mass spectra of the effluent gas show that CO2 formed by oxidation of one terminal CO ligand per cluster as H2 (and not H2O) formed, evidence that hydride ligands had been present on the cluster following treatment (i). The understanding of how O2 reacts with the metal polyhedron provides a foundation for understanding of how oxidation catalysis may proceed on the surfaces of noble metals.

19.
J Am Chem Soc ; 140(10): 3751-3759, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29458253

RESUMO

Some metal-organic frameworks (MOFs) incorporate nodes that are metal oxide clusters such as Zr6O8. Vacancies on the node surfaces, accidental or by design, act as catalytic sites. Here, we report elucidation of the chemistry of Zr6O8 nodes in the MOFs UiO-66 and UiO-67 having used infrared and nuclear magnetic resonance spectroscopies to determine the ligands on the node surfaces originating from the solvents and modifiers used in the syntheses and having elucidated the catalytic properties of the nodes for ethanol dehydration, which takes place selectively to make diethyl ether but not ethylene at 473-523 K. Density functional theory calculations show that the key to the selective catalysis is the breaking of node-linker bonds (or the accidental adjacency of open/defect sites) that allows catalytically fruitful bonding of the reactant ethanol to neighboring sites on the nodes, facilitating the bimolecular ether formation through an SN2 mechanism.

20.
Faraday Discuss ; 208(0): 9-33, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29901045

RESUMO

Molecular metal complexes on supports have drawn wide attention as catalysts offering new properties and opportunities for precise synthesis to make uniform catalytic species that can be understood in depth. Here we highlight advances in research with catalysts that are a step more complex than those incorporating single, isolated metal atoms on supports. These more complex catalysts consist of supported noble metal clusters and supported metal oxide clusters, and our emphasis is placed on some of the simplest and best-defined of these catalysts, made by precise synthesis, usually with organometallic precursors. Characterization of these catalysts by spectroscopic, microscopic, and theoretical methods is leading to rapid progress in fundamental understanding of catalyst structure and function, and to expansion of this class of materials. The simplest supported metal clusters incorporate two metal atoms each-they are pair-site catalysts. These and clusters containing several metal atoms have reactivities determined by the metal nuclearity, the ligands on the metal, and the supports, which themselves are ligands. Metal oxide clusters are also included in the discussion presented here, with Zr6O8 clusters that are nodes in metal-organic frameworks being among those that are understood the best. The surface and catalytic chemistries of these metal oxide clusters are distinct from those of bulk zirconia. A challenge in using any supported cluster catalysts is associated with their possible sintering, and recent research shows how metal nanoparticles can be encapsulated in sheaths with well-defined porous structures-zeolites-that make them highly resistant to sintering.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa