Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 128(10): 2050-2057, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28863361

RESUMO

OBJECTIVE: Current Brain-Computer Interface (BCI) systems typically flash an array of items from grey to white (GW). The objective of this study was to evaluate BCI performance using uniquely colored stimuli. METHODS: In addition to the GW stimuli, the current study tested two types of color stimuli (grey to color [GC] and color intensification [CI]). The main hypotheses were that in a checkboard paradigm, unique color stimuli will: (1) increase BCI performance over the standard GW paradigm; (2) elicit larger event-related potentials (ERPs); and, (3) improve offline performance with an electrode selection algorithm (i.e., Jumpwise). RESULTS: Online results (n=36) showed that GC provides higher accuracy and information transfer rate than the CI and GW conditions. Waveform analysis showed that GC produced higher amplitude ERPs than CI and GW. Information transfer rate was improved by the Jumpwise-selected channel locations in all conditions. CONCLUSIONS: Unique color stimuli (GC) improved BCI performance and enhanced ERPs. Jumpwise-selected electrode locations improved offline performance. SIGNIFICANCE: These results show that in a checkerboard paradigm, unique color stimuli increase BCI performance, are preferred by participants, and are important to the design of end-user applications; thus, could lead to an increase in end-user performance and acceptance of BCI technology.


Assuntos
Interfaces Cérebro-Computador/normas , Percepção de Cores/fisiologia , Potenciais Evocados P300/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Adulto , Eletroencefalografia/métodos , Eletroencefalografia/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Int J Hum Comput Interact ; 27(1): 69-84, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21278858

RESUMO

This study compared a conventional P300 speller brain-computer interface (BCI) to one used in conjunction with a predictive spelling program. Performance differences in accuracy, bit rate, selections per minute, and output characters per minute (OCM) were examined. An 8×9 matrix of letters, numbers, and other keyboard commands was used. Participants (n = 24) were required to correctly complete the same 58 character sentence (i.e., correcting for errors) using the predictive speller (PS) and the non-predictive speller (NS), counterbalanced. The PS produced significantly higher OCMs than the NS. Time to complete the task in the PS condition was 12min 43sec as compared to 20min 20sec in the NS condition. Despite the marked improvement in overall output, accuracy was significantly higher in the NS paradigm. P300 amplitudes were significantly larger in the NS than in the PS paradigm; which is attributed to increased workload and task demands. These results demonstrate the potential efficacy of predictive spelling in the context of BCI.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa