Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Curr Opin Oncol ; 35(2): 100-106, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36700456

RESUMO

PURPOSE OF REVIEW: Checkpoint inhibitors (CPIs) have revolutionized treatment outcomes for patients with malignant melanoma. Long-term follow-up shows that a substantial subset of patients who exhibit clinical responses achieve extended overall survival. Nevertheless, most patients do not achieve durable benefit from CPIs, and improvements are urgently needed. The clinical efficacy of CPIs depends on highly variable preexisting spontaneous T-cell immune responses. Cancer vaccines represent an independent treatment modality uniquely capable of expanding the repertoire of tumor-specific T cells in cancer patients and thus have the capacity to compensate for the variability in spontaneous T-cell responses. Vaccines are, therefore, considered attractive components in a CPI-combination strategy. RECENT FINDINGS: Here we discuss recent results obtained through therapeutic vaccination against telomerase human telomerase reverse transcriptase (hTERT). Recent publications on translational research and clinical results from phase I trials indicate that vaccination against telomerase in combination with CPIs provides relevant immune responses, negligible added toxicity, and signals of clinical efficacy. CONCLUSION: In the near future, randomized data from clinical trials involving therapeutic cancer vaccines and checkpoint inhibitors will be available. Positive readout may spark broad development and allow cancer vaccines to find their place in the clinic as an important component in multiple future CPI combinations.


Assuntos
Vacinas Anticâncer , Melanoma , Neoplasias Cutâneas , Telomerase , Humanos , Vacinas Anticâncer/uso terapêutico , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Vacinação
2.
J Transl Med ; 20(1): 419, 2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089578

RESUMO

BACKGROUND: This clinical trial evaluated a novel telomerase-targeting therapeutic cancer vaccine, UV1, in combination with ipilimumab, in patients with metastatic melanoma. Translational research was conducted on patient-derived blood and tissue samples with the goal of elucidating the effects of treatment on the T cell receptor repertoire and tumor microenvironment. METHODS: The trial was an open-label, single-center phase I/IIa study. Eligible patients had unresectable metastatic melanoma. Patients received up to 9 UV1 vaccinations and four ipilimumab infusions. Clinical responses were assessed according to RECIST 1.1. Patients were followed up for progression-free survival (PFS) and overall survival (OS). Whole-exome and RNA sequencing, and multiplex immunofluorescence were performed on the biopsies. T cell receptor (TCR) sequencing was performed on the peripheral blood and tumor tissues. RESULTS: Twelve patients were enrolled in the study. Vaccine-specific immune responses were detected in 91% of evaluable patients. Clinical responses were observed in four patients. The mPFS was 6.7 months, and the mOS was 66.3 months. There was no association between baseline tumor mutational burden, neoantigen load, IFN-γ gene signature, tumor-infiltrating lymphocytes, and response to therapy. Tumor telomerase expression was confirmed in all available biopsies. Vaccine-enriched TCR clones were detected in blood and biopsy, and an increase in the tumor IFN-γ gene signature was detected in clinically responding patients. CONCLUSION: Clinical responses were observed irrespective of established predictive biomarkers for checkpoint inhibitor efficacy, indicating an added benefit of the vaccine-induced T cells. The clinical and immunological read-out warrants further investigation of UV1 in combination with checkpoint inhibitors. Trial registration Clinicaltrials.gov identifier: NCT02275416. Registered October 27, 2014. https://clinicaltrials.gov/ct2/show/NCT02275416?term=uv1&draw=2&rank=6.


Assuntos
Melanoma , Telomerase , Humanos , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Melanoma/patologia , Microambiente Tumoral , Vacinação
3.
FASEB J ; 35(9): e21750, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34424568

RESUMO

Success of adoptive cell therapy mainly depends on the ability of immune cells to persist and function optimally in the immunosuppressive tumor microenvironment. Although present at the cancer site, immune cells become exhausted and/or inhibited, due to the presence of inhibitory receptors such as PD-L1 on malignant cells. Novel genetic strategies to manipulate the PD1/PD-L1 axis comprise (i) PD-1 reversion where the receptor intracellular domain is replaced with an activating unit, (ii) the use of anti-PD-L1 CAR or (iii) the disruption of the PD-1 gene. We here present an alternative strategy to equip therapeutic cells with a truncated PD-1 (tPD-1) to abrogate PD-1/PD-L1 inhibition. We show that engagement of tPD-1 with PD-L1-positive tumor unleashes NK-92 activity in vitro. Furthermore, this binding was sufficiently strong to induce killing of targets otherwise not recognized by NK-92, thus increasing the range of targets. In vivo treatment with NK-92 tPD-1 cells led to reduced tumor growth and improved survival. Importantly, tPD-1 did not interfere with tumor recognition in PD-L1 negative conditions. Thus, tPD-1 represents a straightforward method for improving antitumor immunity and revealing new targets through PD-L1 positivity.


Assuntos
Antígeno B7-H1/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Evasão Tumoral/imunologia , Animais , Adesão Celular , Engenharia Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Engenharia Genética , Humanos , Camundongos , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , RNA Mensageiro/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Ther ; 29(3): 1199-1213, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33212301

RESUMO

T cell receptor (TCR)-engineered T cell therapy is a promising cancer treatment approach. Human telomerase reverse transcriptase (hTERT) is overexpressed in the majority of tumors and a potential target for adoptive cell therapy. We isolated a novel hTERT-specific TCR sequence, named Radium-4, from a clinically responding pancreatic cancer patient vaccinated with a long hTERT peptide. Radium-4 TCR-redirected primary CD4+ and CD8+ T cells demonstrated in vitro efficacy, producing inflammatory cytokines and killing hTERT+ melanoma cells in both 2D and 3D settings, as well as malignant, patient-derived ascites cells. Importantly, T cells expressing Radium-4 TCR displayed no toxicity against bone marrow stem cells or mature hematopoietic cells. Notably, Radium-4 TCR+ T cells also significantly reduced tumor growth and improved survival in a xenograft mouse model. Since hTERT is a universal cancer antigen, and the very frequently expressed HLA class II molecules presenting the hTERT peptide to this TCR provide a very high (>75%) population coverage, this TCR represents an attractive candidate for immunotherapy of solid tumors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunoterapia/métodos , Melanoma/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Telomerase/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Humanos , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Immunol Immunother ; 69(1): 159-161, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776597

RESUMO

The original version of this article unfortunately included a mistake in Fig. 2b where the images of mice in the tumour control group (right), day 30 (bottom) should be removed as the wrong images (duplicate of day 17) were inserted by mistake. At this time point the tumour control mice were no longer alive and the images were replaced by black areas.

6.
Cancer Immunol Immunother ; 68(8): 1235-1243, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31214732

RESUMO

Off-target toxicity due to the expression of target antigens in normal tissue or TCR cross-reactivity represents a major risk when using T cell receptor (TCR)-engineered T cells for treatment of solid tumours. Due to the inherent cross-reactivity of TCRs it is difficult to accurately predict their target recognition pre-clinically. It has become evident that direct testing in a human being represents the best evaluation of the risks. There is, therefore, a clear unmet need for assessing the safety of a therapeutic TCR in a more controllable manner than by the injection of permanently modified cellular products. Using transiently modified T cells combined with dose escalation has already been shown feasible for chimeric antigen receptor (CAR)-engineered T cells, but nothing is yet reported for TCR. We performed a preclinical evaluation of a therapeutic TCR transiently expressed in T cells by mRNA electroporation. We analyzed if the construct was active in vitro, how long it was detectable for and if this expression format was adapted to in vivo efficacy assessment. Our data demonstrate the potential of mRNA engineered T cells, although less powerful than permanent redirection, to induce a significant response. Thus, these findings support the development of mRNA based TCR-therapy strategies as a feasible and efficacious method for evaluating TCR safety and efficacy in first-in-man testing.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias Colorretais/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Animais , Neoplasias Colorretais/imunologia , Reações Cruzadas , Citotoxicidade Imunológica , Eletroporação , Células HCT116 , Humanos , Camundongos , Camundongos SCID , Neoplasias Experimentais , RNA Mensageiro/genética , Receptores de Antígenos Quiméricos/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Immunol Immunother ; 66(7): 891-901, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28391357

RESUMO

In newly diagnosed metastatic hormone-naive prostate cancer (mPC), telomerase-based immunotherapy with the novel hTERT peptide vaccine UV1 can induce immune responses with potential clinical benefit. This phase I dose escalation study of UV1 evaluated safety, immune response, effects on prostate-specific antigen (PSA) levels, and preliminary clinical outcome. Twenty-two patients with newly diagnosed metastatic hormone-naïve PC (mPC) were enrolled; all had started androgen deprivation therapy and had no visceral metastases. Bone metastases were present in 17 (77%) patients and 16 (73%) patients had affected lymph nodes. Three dose levels of UV1 were given as intradermal injections combined with GM-CSF (Leukine®). Twenty-one patients in the intention-to-treat population (95%) received conformal radiotherapy. Adverse events reported were predominantly grade 1, most frequently injection site pruritus (86.4%). Serious adverse events considered possibly related to UV1 and/or GM-CSF included anaphylactic reaction in two patients and thrombocytopenia in one patient. Immune responses against UV1 peptides were confirmed in 18/21 evaluable patients (85.7%), PSA declined to <0.5 ng/mL in 14 (64%) patients and in ten patients (45%) no evidence of persisting tumour was seen on MRI in the prostatic gland. At the end of the nine-month reporting period for the study, 17 patients had clinically stable disease. Treatment with UV1 and GM-CSF gave few adverse events and induced specific immune responses in a large proportion of patients unselected for HLA type. The intermediate dose of 0.3 mg UV1 resulted in the highest proportion of, and most rapid UV1-specific immune responses with an acceptable safety profile. These results warrant further clinical studies in mPC.


Assuntos
Adenocarcinoma/terapia , Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Fragmentos de Peptídeos/uso terapêutico , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/terapia , Telomerase/uso terapêutico , Adenocarcinoma/sangue , Adenocarcinoma/imunologia , Adenocarcinoma/secundário , Idoso , Neoplasias Ósseas/secundário , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Estudos de Coortes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Imunidade Ativa/imunologia , Metástase Linfática , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/imunologia , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Telomerase/efeitos adversos , Telomerase/imunologia , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
8.
Cancer Immunol Immunother ; 64(12): 1609-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26498005

RESUMO

We have previously reported two trials in non-small cell lung cancer (NSCLC) evaluating vaccine therapy with the telomerase peptide GV1001. The studies demonstrated considerable differences in survival among immune responders, highlighting that an immune response is not necessarily beneficial. In the present study, we conducted long-term clinical follow-up and investigated immunological factors hypothesized to influence clinical efficacy. Peripheral blood mononuclear cells from 33 NSCLC trial patients and 15 healthy donors were analyzed by flow cytometry for T regulatory cells (Tregs, CD4(+)CD25(+)CD127(low/-)FOXP3(+)) and two types of myeloid-derived suppressor cells (MDSCs, HLA-DR (low) CD14 (+) or Lin (-/lo) HLA-DR (-) CD33 (+) CD11b (+)). T cell cultures were analyzed for 17 cytokines. The results demonstrated that immune responders had increased overall survival (OS, p < 0.001) and progression-free survival (p = 0.003), compared to subjects without immunological response. The mean OS advantage was 54 versus 13 months. Six patients were still alive at the last clinical update, all belonging to the immune responders. No serious toxicity had developed (maximum observation 13 years). Most patients developed a polyfunctional cytokine profile, with high IFNγ/IL-4 and IFNγ/IL-10 ratios. Low Treg levels were associated with improved OS (p = 0.037) and a favorable cytokine profile, including higher IFNγ/IL-10 ratios. High CD33(+) MDSC levels were associated with poorer immune response rate (p = 0.005). The levels of CD14(+) MDSC were significantly higher in patients than in healthy controls (p = 0.012). We conclude that a randomized GV1001 trial in NSCLC is warranted. The findings suggest that Tregs and MDSCs are associated with a tolerogenic cytokine milieu and impaired clinical efficacy of vaccine responses.


Assuntos
Vacinas Anticâncer/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Adulto , Idoso , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Citocinas/sangue , Citocinas/imunologia , Intervalo Livre de Doença , Feminino , Citometria de Fluxo , Seguimentos , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/imunologia , Linfócitos T Reguladores/imunologia , Telomerase/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
9.
Int J Cancer ; 134(1): 102-13, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23784959

RESUMO

Cancer cells escape T-cell-mediated destruction by losing human leukocyte antigen (HLA) class I expression via various mechanisms, including loss of beta2-microglobulin (ß2m). Our study illustrates the immune escape of HLA class I-negative tumor cells and chronological sequence of appearance of tumor ß2m gene mutation in successive lesions obtained from a patient with metastatic melanoma. We observed a gradual decrease in HLA expression in consecutive lesions with few HLA-negative nodules in the primary tumor and the emergence of a totally negative lesion at later stages of the disease. We detected loss of ß2m in ß2m-negative nests of the primary tumor caused by a combination of two alterations: (i) a mutation (G to T substitution) in codon 67 in exon 2 of ß2m gene, producing a stop codon and (ii) loss of the second gene copy by loss of heterozygosity (LOH) in chromosome 15. The same ß2m mutation was found in a homogeneously ß2m-negative metastasis 10 months later and in a cell line established from a biopsy of a postvaccination lymph node. Microsatellite analysis revealed the presence of LOH in chromosomes 6 and 15 in tumor samples, showing an accumulation of chromosomal loss at specific short tandem repeats in successive metastases during disease progression. HLA loss correlated with decreased tumor CD8+ T-cell infiltration. Early incidence of ß2m defects can cause an immune selection and expansion of highly aggressive melanoma clones with irreversible genetic defects causing total loss of HLA class I expression and should be taken into consideration as a therapeutic target in the development of cancer immunotherapy protocols.


Assuntos
Antígenos de Histocompatibilidade Classe I/biossíntese , Melanoma/genética , Evasão Tumoral/genética , Microglobulina beta-2/genética , Idoso , Linhagem Celular Tumoral , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imuno-Histoquímica , Perda de Heterozigosidade , Melanoma/imunologia , Melanoma/patologia , Mutação , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Evasão Tumoral/imunologia , Microglobulina beta-2/imunologia
10.
Cancer Immunol Immunother ; 62(9): 1499-509, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23817721

RESUMO

BACKGROUND: The growth and recurrence of several cancers appear to be driven by a population of cancer stem cells (CSCs). Glioblastoma, the most common primary brain tumor, is invariably fatal, with a median survival of approximately 1 year. Although experimental data have suggested the importance of CSCs, few data exist regarding the potential relevance and importance of these cells in a clinical setting. METHODS: We here present the first seven patients treated with a dendritic cell (DC)-based vaccine targeting CSCs in a solid tumor. Brain tumor biopsies were dissociated into single-cell suspensions, and autologous CSCs were expanded in vitro as tumorspheres. From these, CSC-mRNA was amplified and transfected into monocyte-derived autologous DCs. The DCs were aliquoted to 9-18 vaccines containing 10(7) cells each. These vaccines were injected intradermally at specified intervals after the patients had received a standard 6-week course of post-operative radio-chemotherapy. The study was registered with the ClinicalTrials.gov identifier NCT00846456. RESULTS: Autologous CSC cultures were established from ten out of eleven tumors. High-quality RNA was isolated, and mRNA was amplified in all cases. Seven patients were able to be weaned from corticosteroids to receive DC immunotherapy. An immune response induced by vaccination was identified in all seven patients. No patients developed adverse autoimmune events or other side effects. Compared to matched controls, progression-free survival was 2.9 times longer in vaccinated patients (median 694 vs. 236 days, p = 0.0018, log-rank test). CONCLUSION: These findings suggest that vaccination against glioblastoma stem cells is safe, well-tolerated, and may prolong progression-free survival.


Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Glioblastoma/terapia , Imunoterapia Adotiva/métodos , Células-Tronco Neoplásicas/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Vacinas Anticâncer/imunologia , Terapia Combinada , Células Dendríticas/patologia , Intervalo Livre de Doença , Feminino , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/genética , Telomerase/genética , Telomerase/imunologia , Transfecção
11.
Nat Commun ; 14(1): 3375, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291203

RESUMO

Osteosarcoma (OS) remains a dismal malignancy in children and young adults, with poor outcome for metastatic and recurrent disease. Immunotherapies in OS are not as promising as in some other cancer types due to intra-tumor heterogeneity and considerable off-target expression of the potentially targetable proteins. Here we show that chimeric antigen receptor (CAR) T cells could successfully target an isoform of alkaline phosphatase, ALPL-1, which is highly and specifically expressed in primary and metastatic OS. The target recognition element of the second-generation CAR construct is based on two antibodies, previously shown to react against OS. T cells transduced with these CAR constructs mediate efficient and effective cytotoxicity against ALPL-positive cells in in vitro settings and in state-of-the-art in vivo orthotopic models of primary and metastatic OS, without unexpected toxicities against hematopoietic stem cells or healthy tissues. In summary, CAR-T cells targeting ALPL-1 show efficiency and specificity in treating OS in preclinical models, paving the path for clinical translation.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Humanos , Imunoterapia Adotiva , Linfócitos T , Imunoterapia , Osteossarcoma/terapia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Fosfatase Alcalina
12.
HLA ; 99(4): 313-327, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35073457

RESUMO

Accurate and full-length typing of the HLA region is important in many clinical and research settings. With the advent of next generation sequencing (NGS), several HLA typing algorithms have been developed, including many that are applicable to whole exome sequencing (WES). However, most of these solutions operate by providing the closest-matched HLA allele among the known alleles in IPD-IMGT/HLA Database. These database-matching approaches have demonstrated very high performance when typing well characterized HLA alleles. However, as they rely on the completeness of the HLA database, they are not optimal for detecting novel or less well characterized alleles. Furthermore, the database-matching approaches are also not adequate in the context of cancer, where a comprehensive characterization of somatic HLA variation and expression patterns of a tumor's HLA locus may guide therapy and clinical outcome, because of the pivotal role HLA alleles play in tumor antigen recognition and immune escape. Here, we describe a personalized HLA typing approach applied to WES data that leverages the strengths of database-matching approaches while simultaneously allowing for the discovery of novel HLA alleles and tumor-specific HLA variants, through the systematic integration of germline and somatic variant calling. We applied this approach on WES from 10 metastatic melanoma patients and validated the HLA typing results using HLA targeted NGS sequencing from patients where at least one HLA germline candidate was detected on Class I HLA. Targeted NGS sequencing confirmed 100% performance for the 1st and 2nd fields. In total, five out of the six detected HLA germline variants were because of Class I ambiguities at the third or fourth fields, and their detection recovered the correct HLA allele genotype. The sixth germline variant let to the formal discovery of a novel Class I allele. Finally, we demonstrated a substantially improved somatic variant detection accuracy in HLA alleles with a 91% of success rate in simulated experiments. The approach described here may allow the field to genotype more accurately using WES data, leading to the discovery of novel HLA alleles and help characterize the relationship between somatic variation in the HLA region and immunosurveillance.


Assuntos
Antígenos HLA , Neoplasias , Alelos , Genótipo , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Teste de Histocompatibilidade/métodos , Humanos , Neoplasias/genética , Análise de Sequência de DNA
13.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613827

RESUMO

BACKGROUND: Therapeutic cancer vaccines represent a promising approach to improve clinical outcomes with immune checkpoint inhibition. UV1 is a second generation telomerase-targeting therapeutic cancer vaccine being investigated across multiple indications. Although telomerase is a near-universal tumor target, different treatment combinations applied across indications may affect the induced immune response. Three phase I/IIa clinical trials covering malignant melanoma, non-small cell lung cancer, and prostate cancer have been completed, with patients in follow-up for up to 8 years. METHODS: 52 patients were enrolled across the three trials. UV1 was given as monotherapy in the lung cancer trial and concurrent with combined androgen blockade in the prostate cancer trial. In the melanoma study, patients initiated ipilimumab treatment 1 week after the first vaccine dose. Patients were followed for UV1-specific immune responses at frequent intervals during vaccination, and every 6 months for up to 8 years in a follow-up period. Phenotypic and functional characterizations were performed on patient-derived vaccine-specific T cell responses. RESULTS: In total, 78.4% of treated patients mounted a measurable vaccine-induced T cell response in blood. The immune responses in the malignant melanoma trial, where UV1 was combined with ipilimumab, occurred more rapidly and frequently than in the lung and prostate cancer trials. In several patients, immune responses peaked years after their last vaccination. An in-depth characterization of the immune responses revealed polyfunctional CD4+ T cells producing interferon-γ and tumor necrosis factor-α on interaction with their antigen. CONCLUSION: Long-term immunomonitoring of patients showed highly dynamic and persistent telomerase peptide-specific immune responses lasting up to 7.5 years after the initial vaccination, suggesting a plausible functional role of these T cells in long-term survivors. The superior immune response kinetics observed in the melanoma study substantiate the rationale for future combinatorial treatment strategies with UV1 vaccination and checkpoint inhibition for rapid and frequent induction of anti-telomerase immune responses in patients with cancer.


Assuntos
Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Neoplasias da Próstata , Telomerase , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto , Seguimentos , Humanos , Imunidade , Ipilimumab/uso terapêutico , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Melanoma/tratamento farmacológico , Peptídeos , Neoplasias da Próstata/patologia , Neoplasias Cutâneas , Vacinação , Vacinas de Subunidades Antigênicas , Melanoma Maligno Cutâneo
14.
Int J Cancer ; 128(5): 1120-8, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20473937

RESUMO

K-ras mutations are frequently found in adenocarcinomas of the pancreas and can elicit mutation-specific immune responses. Targeting the immune system against mutant Ras may thus influence the clinical course of the disease. Twenty-three patients who were vaccinated after surgical resection for pancreatic adenocarcinoma (22 pancreaticoduodenectomies, one distal resection), in two previous Phase I/II clinical trials, were followed for more than 10 years with respect to long-term immunological T-cell reactivity and survival. The vaccine was composed of long synthetic mutant ras peptides designed mainly to elicit T-helper responses. Seventeen of 20 evaluable patients (85%) responded immunologically to the vaccine. Median survival for all patients was 27.5 months and 28 months for immune responders. The 5-year survival was 22% and 29%, respectively. Strikingly, 10-year survival was 20% (four patients out of 20 evaluable) versus zero (0/87) in a cohort of nonvaccinated patient treated in the same period. Three patients mounted a memory response up to 9 years after vaccination. The present observation of long-term immune response together with 10-year survival following surgical resection indicates that K-ras vaccination may consolidate the effect of surgery and represent an adjuvant treatment option for the future.


Assuntos
Adenocarcinoma/imunologia , Vacinas Anticâncer/administração & dosagem , Genes ras/imunologia , Neoplasias Pancreáticas/imunologia , Adenocarcinoma/cirurgia , Adenocarcinoma/terapia , Idoso , Feminino , Seguimentos , Humanos , Hipersensibilidade Tardia , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/terapia , Análise de Sobrevida , Linfócitos T/imunologia
15.
Cancer Immunol Immunother ; 60(6): 809-18, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21365467

RESUMO

Immunotherapy targeting the hTERT subunit of telomerase has been shown to induce robust immune responses in cancer patients after vaccination with single hTERT peptides. Vaccination with dendritic cells (DCs) transfected with hTERT mRNA has the potential to induce strong immune responses to multiple hTERT epitopes and is therefore an attractive approach to more potent immunotherapy. Blood samples from such patients provide an opportunity for identification of new, in vivo processed T-cell epitopes that may be clinically relevant. A 62-year-old female patient underwent radical surgery for a pancreatic adenocarcinoma. After relapse, she obtained stable disease on gemcitabine treatment. Due to severe neutropenia, the chemotherapy was terminated. The patient has subsequently been treated with autologous DCs loaded with hTERT mRNA for 3 years. Immunomonitoring was performed at regular intervals following start of vaccination and clinical outcome measured by CT and PET/CT evaluation. The patient developed an immune response against several hTERT-derived Th and CTL epitopes. She presently shows no evidence of active disease based on PET/CT scans. No serious adverse events were experienced and the patient continues to receive regular booster injections. We here provide evidence for the induction of hTERT-specific immune responses following vaccination of a pancreas cancer patient with DCs loaded with hTERT mRNA. These responses are associated with complete remission. A thorough analysis of this patient immune response has provided a unique opportunity to identify novel epitopes, associated with clinical effects. These will be included in future hTERT vaccines.


Assuntos
Vacinas Anticâncer/uso terapêutico , Carcinoma Ductal Pancreático/terapia , Células Dendríticas/imunologia , Neoplasias Pancreáticas/terapia , RNA Mensageiro/imunologia , Telomerase/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Processos de Crescimento Celular/imunologia , Linhagem Celular Tumoral , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , RNA Mensageiro/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Telomerase/genética , Transfecção
16.
Cancer Immunol Immunother ; 60(11): 1553-64, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21681371

RESUMO

PURPOSE: A phase I study was conducted to investigate the safety, tolerability, and immunological responses to vaccination with a combination of telomerase-derived peptides GV1001 (hTERT: 611-626) and p540 (hTERT: 540-548) using granulocyte-macrophage colony-stimulating factor (GM-CSF) or tuberculin as adjuvant in patients with cutaneous melanoma. EXPERIMENTAL DESIGN: Ten patients with melanoma stages UICC IIb-IV were vaccinated 8 times intradermally with either 60 or 300 nmole of GV1001 and p540 peptide using GM-CSF as adjuvant. A second group of patients received only 300 nmole GV1001 in combination with tuberculin PPD23 injections. HLA typing was not used as an inclusion criterion. Peptide-specific immune responses were measured by delayed-type hypersensitivity (DTH) reactions, in vitro T cell proliferation assays, and cytotoxicity (51-Chromium release) assays for a selected number of clones subsequently generated. RESULTS: Vaccination was well tolerated in all patients. Peptide-specific immune response measured by DTH reactions and in vitro response could be induced in a dose-dependent fashion in 7 of 10 patients. Cloned T cells from the vaccinated patients showed proliferative responses against both vaccine peptides GV1001 and p540. Furthermore, T cell clones were able to specifically lyse p540-pulsed T2 target cells and various pulsed and unpulsed tumor cell lines. CONCLUSION: These results demonstrate that immunity to hTERT can be generated safely and effectively in patients with advanced melanoma and therefore encourage further trials.


Assuntos
Vacinas Anticâncer/uso terapêutico , Melanoma/terapia , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Telomerase/imunologia , Telomerase/uso terapêutico , Adulto , Idoso , Sequência de Aminoácidos , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Feminino , Humanos , Masculino , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fragmentos de Peptídeos/efeitos adversos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Telomerase/efeitos adversos
17.
Cytotherapy ; 13(5): 629-40, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21174490

RESUMO

BACKGROUND AIMS: T cells can be redirected to reject cancer by retroviral transduction with a chimeric antigen receptor (CAR) or by administration of a bispecific T cell engager (BiTE). We demonstrate that transfection of T cells with messenger (m) RNA coding for CAR is an alternative strategy. METHODS: We describe the pre-clinical evaluation of a method based on transient modification of expanded T cells with a CD19 CAR directed against B-cell malignancies. CAR mRNA was generated under cell-free conditions in a scalable process using recombinant RNA polymerase. Efficient and non-toxic square-wave electroporation was used to load the mRNA into the cytoplasm of T cells with no risk of insertional mutagenesis. RESULTS: After transfection >80% of T cells were viable, with 94% CAR expression. Transfected T cells were cytolytic to CD19(+) targets and produced interferon (IFN)-γ in response. Killing of CD19(+) target cells was demonstrated even at day 8 with undetectable CAR expression. Increasing the concentration of mRNA resulted in higher surface CAR expression, better killing and more IFN-γ release but at the expense of increased activation-induced cell death. Finally, we demonstrated that a second transgene could be introduced by co-electroporation of CXCR4 or CCR7 with CAR to also modify chemotactic responses. CONCLUSIONS: We advocate the transient redirection approach as well suited to meet safety aspects for early phase studies, prior to trials using stably transduced cells once CAR has been proven safe. The simplicity of this methodology also facilitates rapid screening of candidate targets and novel receptors in pre-clinical studies.


Assuntos
Transferência Adotiva/métodos , Leucemia/terapia , Linfoma/terapia , Receptores de Antígenos/genética , Receptores CCR7/genética , Receptores CXCR4/genética , Linfócitos T/imunologia , Linfócitos T/transplante , Antígenos CD19/análise , Linhagem Celular Tumoral , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Retroviridae , Transdução Genética
18.
Front Immunol ; 12: 682492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290704

RESUMO

Telomerase-based therapeutic cancer vaccines (TCVs) have been under clinical investigation for the past two decades. Despite past failures, TCVs have gained renewed enthusiasm for their potential to improve the efficacy of checkpoint inhibition. Telomerase stands as an attractive target for TCVs due to its almost universal presence in cancer and its essential function promoting tumor growth. Herein, we review tumor telomerase biology that may affect the efficacy of therapeutic vaccination and provide insights on optimal vaccine design and treatment combinations. Tumor types possessing mechanisms of increased telomerase expression combined with an immune permissive tumor microenvironment are expected to increase the therapeutic potential of telomerase-targeting cancer vaccines. Regardless, rational treatment combinations, such as checkpoint inhibitors, are likely necessary to bring out the true clinical potential of TCVs.


Assuntos
Biomarcadores Tumorais , Vacinas Anticâncer/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Telomerase/genética , Telomerase/metabolismo , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Neoplasias/terapia , Pesquisa , Microambiente Tumoral/imunologia , Vacinação
19.
Oncoimmunology ; 10(1): 1936757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235003

RESUMO

T-cell receptor (TCR) redirected T cells are considered as the next generation of care for the treatment of numerous solid tumors. KRAS mutations are driver neoantigens that are expressed in over 25% of all cancers and are thus regarded as ideal targets for Adoptive Cell Therapy (ACT). We have isolated four KRAS-specific TCRs from a long-term surviving pancreatic cancer patient vaccinated with a mix of mutated KRAS peptides. The sequence of these TCRs could be identified and expressed in primary cells. We demonstrated stable expression of all TCRs as well as target-specific functionality when expressing T cells were co-incubated with target cells presenting KRAS peptides. In addition, these TCRs were all partially co-receptor independent since they were functional in both CD4 and CD8 T cells, thus indicating high affinity. Interestingly, we observed that certain TCRs were able to recognize several KRAS mutations in complex with their cognate Human leukocyte antigen (HLA), suggesting that, here, the point mutations were less important for the HLA binding and TCR recognition, whereas others were single-mutation restricted. Finally, we demonstrated that these peptides were indeed processed and presented, since HLA-matched antigen presenting cells exogenously loaded with KRAS proteins were recognized by TCR-transduced T cells. Taken together, our data demonstrate that KRAS mutations are immunogenic for CD4 T cells and are interesting targets for TCR-based cancer immunotherapy.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Antígenos de Neoplasias , Antígenos HLA , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Antígenos de Linfócitos T/genética
20.
Front Immunol ; 12: 663865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046035

RESUMO

Background: Ipilimumab improves survival for patients with metastatic malignant melanoma. Combining a therapeutic cancer vaccine with ipilimumab may increase efficacy by providing enhanced anti-tumor immune responses. UV1 consists of three synthetic long peptides from human telomerase reverse transcriptase (hTERT). These peptides comprise epitopes recognized by T cells from cancer patients experiencing long-term survival following treatment with a first-generation hTERT vaccine, and generate long-lasting immune responses in cancer patients when used as monotherapy. The objective of this trial was to investigate the safety and efficacy of combining UV1 with ipilimumab in metastatic melanoma. Patients and Methods: In this phase I/IIa, single center trial [NCT02275416], patients with metastatic melanoma received repeated UV1 vaccinations, with GM-CSF as an adjuvant, in combination with ipilimumab. Patients were evaluated for safety, efficacy and immune response. Immune responses against vaccine peptides were monitored in peripheral blood by measuring antigen-specific proliferation and IFN-γ production. Results: Twelve patients were recruited. Adverse events were mainly diarrhea, injection site reaction, pruritus, rash, nausea and fatigue. Ten patients showed a Th1 immune response to UV1 peptides, occurring early and after few vaccinations. Three patients obtained a partial response and one patient a complete response. Overall survival was 50% at 5 years. Conclusion: Treatment was well tolerated. The rapid expansion of UV1-specific Th1 cells in the majority of patients indicates synergy between UV1 vaccine and CTLA-4 blockade. This may have translated into clinical benefit, encouraging the combination of UV1 vaccination with standard of care treatment regimes containing ipilimumab/CTLA-4 blocking antibodies.


Assuntos
Vacinas Anticâncer/imunologia , Ipilimumab/uso terapêutico , Melanoma/terapia , Telomerase/antagonistas & inibidores , Adulto , Idoso , Biomarcadores , Biópsia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Terapia Combinada , Feminino , Seguimentos , Humanos , Ipilimumab/administração & dosagem , Ipilimumab/efeitos adversos , Masculino , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Telomerase/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa