Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Chem Chem Phys ; 25(14): 10103-10112, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36974629

RESUMO

Understanding energy transport in quantum systems is crucial for an understanding of light-harvesting in nature, and for the creation of new quantum technologies. Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport (ENAQT) as a widespread phenomenon occurring in biological and artificial systems. That work has been primarily focused on several 'canonical' structures, from simple chains, rings and crystals of varying dimensions, to well-studied light-harvesting complexes. Studying those particular systems has produced specific assumptions about ENAQT, including the notion of a single, ideal, range of environmental coupling rates that improve energy transport. In this paper we show that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.

2.
J Chem Phys ; 153(13): 134701, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33032411

RESUMO

We present a novel, counter-intuitive method, based on dark-state protection, for significantly improving exciton transport efficiency through "wires" comprising a chain of molecular sites with an intrinsic energy gradient. Specifically, by introducing "barriers" to the energy landscape at regular intervals along the transport path, we find that undesirable radiative recombination processes are suppressed due to a clear separation of sub-radiant and super-radiant eigenstates in the system. This, in turn, can lead to an improvement in transmitted power by many orders of magnitude, even for very long chains. From there, we analyze the robustness of this phenomenon to changes in both system and environment properties to show that this effect can be beneficial over a range of different thermal and optical environment regimes. Finally, we show that the novel energy landscape presented here may provide a useful foundation for overcoming the short length scales over which exciton diffusion typically occurs in organic photo-voltaics and other nanoscale transport scenarios, thus leading to considerable potential improvements in the efficiency of such devices.

3.
J Chem Phys ; 152(6): 064103, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061212

RESUMO

Marcus and Landauer-Büttiker approaches to charge transport through molecular junctions describe two contrasting mechanisms of electronic conduction. In previous work, we have shown how these charge transport theories can be unified in the single-level case by incorporating lifetime broadening into the second-order quantum master equation. Here, we extend our previous treatment by incorporating lifetime broadening in the spirit of the self-consistent Born approximation. By comparing both theories to numerically converged hierarchical-equations-of-motion results, we demonstrate that our novel self-consistent approach rectifies shortcomings of our earlier framework, which are present especially in the case of relatively strong electron-vibrational coupling. We also discuss circumstances under which the theory developed here simplifies to the generalized theory developed in our earlier work. Finally, by considering the high-temperature limit of our new self-consistent treatment, we show how lifetime broadening can also be self-consistently incorporated into Marcus theory. Overall, we demonstrate that the self-consistent approach constitutes a more accurate description of molecular conduction while retaining most of the conceptual simplicity of our earlier framework.

4.
J Chem Phys ; 149(15): 154112, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30342434

RESUMO

Charge transport through molecular junctions is often described either as a purely coherent or a purely classical phenomenon, and described using the Landauer-Büttiker formalism or Marcus theory (MT), respectively. Using a generalised quantum master equation, we here derive an expression for current through a molecular junction modelled as a single electronic level coupled with a collection of thermalised vibrational modes. We demonstrate that the aforementioned theoretical approaches can be viewed as two limiting cases of this more general expression and present a series of approximations of this result valid at higher temperatures. We find that MT is often insufficient in describing the molecular charge transport characteristics and gives rise to a number of artefacts, especially at lower temperatures. Alternative expressions, retaining its mathematical simplicity, but rectifying those shortcomings, are suggested. In particular, we show how lifetime broadening can be consistently incorporated into MT, and we derive a low-temperature correction to the semi-classical Marcus hopping rates. Our results are applied to examples building on phenomenological as well as microscopically motivated electron-vibrational coupling. We expect them to be particularly useful in experimental studies of charge transport through single-molecule junctions as well as self-assembled monolayers.

5.
Phys Chem Chem Phys ; 19(43): 29534-29539, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29082390

RESUMO

Single-molecule electronics has been envisioned as the ultimate goal in the miniaturisation of electronic circuits. While the aim of incorporating single-molecule junctions into modern technology still proves elusive, recent developments in this field have begun to enable experimental investigation of fundamental concepts within the area of chemical physics. One such phenomenon is the concept of environment-assisted quantum transport which has emerged from the investigation of exciton transport in photosynthetic complexes. Here, we study charge transport through a two-site molecular junction coupled to a vibrational environment. We demonstrate that vibrational interactions can significantly enhance the current through specific molecular orbitals. Our study offers a clear pathway towards finding and identifying environment-assisted transport phenomena in charge transport settings.

6.
Phys Rev Lett ; 117(20): 203603, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886483

RESUMO

Conventional photocells suffer a fundamental efficiency threshold imposed by the principle of detailed balance, reflecting the fact that good absorbers must necessarily also be fast emitters. This limitation can be overcome by "parking" the energy of an absorbed photon in a dark state which neither absorbs nor emits light. Here we argue that suitable dark states occur naturally as a consequence of the dipole-dipole interaction between two proximal optical dipoles for a wide range of realistic molecular dimers. We develop an intuitive model of a photocell comprising two light-absorbing molecules coupled to an idealized reaction center, showing asymmetric dimers are capable of providing a significant enhancement of light-to-current conversion under ambient conditions. We conclude by describing a road map for identifying suitable molecular dimers for demonstrating this effect by screening a very large set of possible candidate molecules.

8.
J Phys Chem Lett ; 15(1): 254-261, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38165172

RESUMO

The coherence of light has been proposed as a quantum-mechanical control for enhancing light-harvesting efficiency. In particular, optical coherence can be manipulated by changing either the polarization state or the spectral phase of the light. Here, we show that, in weak light, light-harvesting efficiency cannot be controlled using any form of optical coherence in molecular light-harvesting systems and, more broadly, those comprising orientationally disordered subunits and operating on longer-than-ultrafast time scales. Under those conditions, optical coherence does not affect the light-harvesting efficiency, meaning that it cannot be used for control. Specifically, polarization-state control is lost in disordered samples or when the molecules reorient on the time scales of light harvesting, and spectral-phase control is lost when the efficiency is time-averaged over a period longer than the optical coherence time. In practice, efficiency is always averaged over long times, meaning that coherent optical control is only possible through polarization and only in systems with orientational order.

9.
Phys Rev Lett ; 110(10): 100503, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521240

RESUMO

Coupled spin chains are promising candidates for wiring up qubits in solid-state quantum computing (QC). In particular, two nitrogen-vacancy centers in diamond can be connected by a chain of implanted nitrogen impurities; when driven by suitable global fields the chain can potentially enable quantum state transfer at room temperature. However, our detailed analysis of error effects suggests that foreseeable systems may fall far short of the fidelities required for QC. Fortunately the chain can function in the more modest role as a mediator of noisy entanglement, enabling QC provided that we use subsequent purification. For instance, a chain of 5 spins with interspin distances of 10 nm has finite entangling power as long as the T(2) time of the spins exceeds 0.55 ms. Moreover we show that repurposing the chain this way can remove the restriction to nearest-neighbor interactions, so eliminating the need for complicated dynamical decoupling sequences.

10.
Biophys J ; 102(5): 961-8, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22404918

RESUMO

Certain migratory birds can sense the Earth's magnetic field. The nature of this process is not yet properly understood. Here we offer a simple explanation according to which birds literally see the local magnetic field through the impact of a physical rather than a chemical signature of the radical pair: a transient, long-lived electric dipole moment. Based on this premise, our picture can explain recent surprising experimental data indicating long lifetimes for the radical pair. Moreover, there is a clear evolutionary path toward this field-sensing mechanism: it is an enhancement of a weak effect that may be present in many species.


Assuntos
Campos Magnéticos , Modelos Biológicos , Migração Animal/fisiologia , Migração Animal/efeitos da radiação , Radicais Livres/metabolismo , Ondas de Rádio , Fatores de Tempo
11.
Sci Rep ; 12(1): 5438, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361842

RESUMO

The suggestion that quantum coherence might enhance biological processes such as photosynthesis is not only of fundamental importance but also leads to hopes of developing bio-inspired 'green' quantum technologies that mimic nature. A key question is how the timescale of coherent processes in molecular systems compare to that of the driving light source-the Sun. Across the quantum biology literature on light-harvesting, the coherence time quoted for sunlight spans about two orders of magnitude, ranging from 0.6 to '10s' of femtoseconds. This difference can potentially be significant in deciding whether the induced light-matter coherence is long enough to affect dynamical processes following photoexcitation. Here we revisit the historic calculations of sunlight coherence starting with the black-body spectrum and then proceed to provide values for the more realistic case of atmospherically filtered light. We corroborate these values with interferometric measurements of the complex degree of temporal coherence from which we calculate the coherence time of atmospherically filtered sunlight as [Formula: see text], as well as the coherence time in a chlorophyll analogous filtered case as [Formula: see text].


Assuntos
Complexos de Proteínas Captadores de Luz , Luz Solar , Interferometria , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Teoria Quântica
12.
J R Soc Interface ; 19(196): 20220580, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36448289

RESUMO

Phycobilisomes (PBS) are massive structures that absorb and transfer light energy to photochemical reaction centres. Among the range of light harvesting systems, PBS are considered to be excellent solutions for absorption cross-sections but relatively inefficient energy transferring systems. This is due to the combination of a large number of chromophores with intermediate coupling distances. Nevertheless, PBS systems persisted from the origin of oxygenic photosynthesis to present-day cyanobacteria and red algae, organisms that account for approximately half of the primary productivity in the ocean. In this study, we modelled energy transfer through subsets of PBS structures, using a comprehensive dynamic Hamiltonian model. Our approach was applied, initially, to pairs of phycobilin hexamers and then extended to short rods. By manipulating the distances and angles between the structures, we could probe the dynamics of exciton transfer. These simulations suggest that the PBS chromophore network enhances energy distribution over the entire PBS structure-both horizontally and vertically to the rod axis. Furthermore, energy transfer was found to be relatively immune to the effects of distances or rotations, within the range of intermediate coupling distances. Therefore, we suggest that the PBS provides unique advantages and flexibility to aquatic photosynthesis.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ficobilissomas , Oxigênio , Fotossíntese
13.
Sci Adv ; 8(11): eabm8171, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302855

RESUMO

Photon-mediated interactions between atoms can arise via coupling to a common electromagnetic mode or by quantum interference. Here, we probe the role of coherence in cooperative emission arising from two distant but indistinguishable solid-state emitters because of path erasure. The primary signature of cooperative emission, the emergence of "bunching" at zero delay in an intensity correlation experiment, is used to characterize the indistinguishability of the emitters, their dephasing, and the degree of correlation in the joint system that can be coherently controlled. In a stark departure from a pair of uncorrelated emitters, in Hong-Ou-Mandel-type interference measurements, we observe photon statistics from a pair of indistinguishable emitters resembling that of a weak coherent state from an attenuated laser. Our experiments establish techniques to control and characterize cooperative behavior between matter qubits using the full quantum optics toolbox, a key step toward realizing large-scale quantum photonic networks.

14.
Sci Adv ; 8(2): eabk3160, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030030

RESUMO

The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea­superextensive scaling of absorption, meaning larger systems absorb faster­is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies.

15.
Phys Rev Lett ; 106(4): 040503, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21405313

RESUMO

In artificial systems, quantum superposition and entanglement typically decay rapidly unless cryogenic temperatures are used. Could life have evolved to exploit such delicate phenomena? Certain migratory birds have the ability to sense very subtle variations in Earth's magnetic field. Here we apply quantum information theory and the widely accepted "radical pair" model to analyze recent experimental observations of the avian compass. We find that superposition and entanglement are sustained in this living system for at least tens of microseconds, exceeding the durations achieved in the best comparable man-made molecular systems. This conclusion is starkly at variance with the view that life is too "warm and wet" for such quantum phenomena to endure.

16.
Phys Rev Lett ; 107(20): 207210, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181771

RESUMO

Recently there have been several theoretical and experimental studies of the prospects for magnetic field sensors based on crystal defects, especially nitrogen vacancy (NV) centers in diamond. Such systems could potentially be incorporated into an atomic force microscopy-like apparatus in order to map the magnetic properties of a surface at the single spin level. In this Letter we propose an augmented sensor consisting of an NV center for readout and an "amplifier" spin system that directly senses the local magnetic field. Our calculations show that this hybrid structure has the potential to detect magnetic moments with a sensitivity and spatial resolution far beyond that of a simple NV center, and indeed this may be the physical limit for sensors of this class.


Assuntos
Fenômenos Magnéticos , Nitrogênio/química , Prótons
17.
Phys Rev Lett ; 106(11): 110504, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469852

RESUMO

Electron spin qubits in molecular systems offer high reproducibility and the ability to self-assemble into larger architectures. However, interactions between neighboring qubits are "always on," and although the electron spin coherence times can be several hundred microseconds, these are still much shorter than typical times for nuclear spins. Here we implement an electron-nuclear hybrid scheme which uses coherent transfer between electron and nuclear spin degrees of freedom in order to both effectively turn on or off interqubit coupling mediated by dipolar interactions and benefit from the long nuclear spin decoherence times (T(2n)). We transfer qubit states between the electron and (15)N nuclear spin in (15)N@C(60) with a two-way process fidelity of 88%, using a series of tuned microwave and radio frequency pulses and measure a nuclear spin coherence lifetime of over 100 ms.

18.
Sci Rep ; 11(1): 4281, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608609

RESUMO

Systems of interacting charges and fields are ubiquitous in physics. Recently, it has been shown that Hamiltonians derived using different gauges can yield different physical results when matter degrees of freedom are truncated to a few low-lying energy eigenstates. This effect is particularly prominent in the ultra-strong coupling regime. Such ambiguities arise because transformations reshuffle the partition between light and matter degrees of freedom and so level truncation is a gauge dependent approximation. To avoid this gauge ambiguity, we redefine the electromagnetic fields in terms of potentials for which the resulting canonical momenta and Hamiltonian are explicitly unchanged by the gauge choice of this theory. Instead the light/matter partition is assigned by the intuitive choice of separating an electric field between displacement and polarisation contributions. This approach is an attractive choice in typical cavity quantum electrodynamics situations.

19.
J Phys Chem Lett ; 12(26): 6143-6151, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181855

RESUMO

Coherence-enhanced light harvesting has not been directly observed experimentally, despite theoretical evidence that coherence can significantly enhance light-harvesting performance. The main experimental obstacle has been the difficulty in isolating the effect of coherence in the presence of confounding variables. Recent proposals for externally controlling coherence by manipulating the light's degree of polarization showed that coherent efficiency enhancements would be possible, but they were restricted to light-harvesting systems weakly coupled to their environment. Here, we show that increases in system-bath coupling strength can amplify coherent efficiency enhancements, rather than suppress them. This result dramatically broadens the range of systems that could be used to conclusively demonstrate coherence-enhanced light harvesting or to engineer coherent effects into artificial light-harvesting devices.

20.
Nat Nanotechnol ; 16(4): 426-430, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33649585

RESUMO

Theoretical studies suggest that mastering the thermocurrent through single molecules can lead to thermoelectric energy harvesters with unprecedentedly high efficiencies.1-6 This can be achieved by engineering molecule length,7 optimizing the tunnel coupling strength of molecules via chemical anchor groups8 or by creating localized states in the backbone with resulting quantum interference features.4 Empirical verification of these predictions, however, faces considerable experimental challenges and is still awaited. Here we use a novel measurement protocol that simultaneously probes the conductance and thermocurrent flow as a function of bias voltage and gate voltage. We find that the resulting thermocurrent is strongly asymmetric with respect to the gate voltage, with evidence of molecular excited states in the thermocurrent Coulomb diamond maps. These features can be reproduced by a rate-equation model only if it accounts for both the vibrational coupling and the electronic degeneracies, thus giving direct insight into the interplay of electronic and vibrational degrees of freedom, and the role of spin entropy in single molecules. Overall these results show that thermocurrent measurements can be used as a spectroscopic tool to access molecule-specific quantum transport phenomena.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa