Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Heart Fail ; 25(5): 754-763, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36891760

RESUMO

AIMS: The management of congestion is one of the key treatment targets in heart failure. Assessing congestion is, however, difficult. The purpose of this study was to investigate the safety and dynamic response of a novel, passive, inferior vena cava (IVC) sensor in a chronic ovine model. METHODS AND RESULTS: A total of 20 sheep divided into three groups were studied in acute and chronic in vivo settings. Group I and Group II included 14 sheep in total with 12 sheep receiving the sensor and two sheep receiving a control device (IVC filter). Group III included an additional six animals for studying responses to volume challenges via infusion of blood and saline solutions. Deployment was 100% successful with all devices implanted; performing as expected with no device-related complications and signals were received at all observations. At similar volume states no significant differences in IVC area normalized to absolute area range were measured (55 ± 17% on day 0 and 62 ± 12% on day 120, p = 0.51). Chronically, the sensors were completely integrated with a thin, reendothelialized neointima with no loss of sensitivity to infused volume. Normalized IVC area changed significantly from 25 ± 17% to 43 ± 11% (p = 0.007) with 300 ml infused. In contrast, right atrial pressure required 1200 ml of infused volume prior to a statistically significant change from 3.1 ± 2.6 mmHg to 7.5 ± 2.0 mmHg (p = 0.02). CONCLUSION: In conclusion, IVC area can be measured remotely in real-time using a safe, accurate, wireless, and chronic implantable sensor promising to detect congestion with higher sensitivity than filling pressures.


Assuntos
Insuficiência Cardíaca , Veia Cava Inferior , Animais , Ovinos , Veia Cava Inferior/diagnóstico por imagem , Insuficiência Cardíaca/terapia
2.
Eur J Heart Fail ; 24(3): 455-462, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837447

RESUMO

AIMS: Remote monitoring of pulmonary artery pressure has reduced heart failure (HF) hospitalizations in chronic HF as elevation of pulmonary artery pressure provides information that can guide treatment. The venous system is characterized by high capacitance, thus substantial increases in intravascular volume can occur before filling pressures increase. The inferior vena cava (IVC) is a highly compliant venous conduit and thus a candidate for early detection of change in intravascular volume. We aimed to compare IVC cross-sectional area using a novel sensor with cardiac filling pressures during experimental manipulation of volume status, vascular tone, and cardiac function. METHODS AND RESULTS: Experiments were conducted in sheep to manipulate volume status (colloid infusion), vascular tone (nitroglycerin infusion) and cardiac function (rapid cardiac pacing). A wireless implantable IVC sensor was validated ex-vivo and in-vivo, and then used to measure the cross-sectional area of the IVC. Right- and left-sided cardiac filling pressures were obtained via right heart catheterization. The IVC sensor provided highly accurate and precise measurements of cross-sectional area in ex-vivo and in-vivo validation. IVC area changes were more sensitive than the corresponding changes in cardiac filling pressures during colloid infusion (p < 0.001), vasodilatation (p < 0.001) and cardiac dysfunction induced by rapid pacing (p ≤ 0.02). CONCLUSIONS: Inferior vena cava area can be remotely and accurately measured in real time with a wireless implantable sensor. Changes in IVC area are more sensitive than corresponding changes in filling pressures following experimental volume loading and fluid redistribution. Additional research is warranted to understand if remote monitoring of the IVC may have advantages over pressure-based monitors in HF.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Animais , Cateterismo Cardíaco , Pressão Venosa Central , Humanos , Ovinos , Veia Cava Inferior/diagnóstico por imagem
3.
Acta Biomater ; 124: 291-300, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571712

RESUMO

The development and subsequent rupture of atherosclerotic plaques in human carotid arteries is a major cause of ischaemic stroke. Mechanical characterization of atherosclerotic plaques can aid our understanding of this rupture risk. Despite this however, experimental studies on human atherosclerotic carotid plaques, and fibrous plaque caps in particular, are very limited. This study aims to provide further insights into atherosclerotic plaque rupture by mechanically testing human fibrous plaque caps, the region of the atherosclerotic lesion most often attributed the highest risk of rupture. The results obtained highlight the variability in the ultimate tensile stress, strain and stiffness experienced in atherosclerotic plaque caps. By pre-screening all samples using small angle light scattering (SALS) to determine the dominant fibre direction in the tissue, along with supporting histological analysis, this work suggests that the collagen fibre alignment in the circumferential direction plays the most dominant role for determining plaque structural stability. The work presented in this study could provide the basis for new diagnostic approaches to be developed, which non-invasively identify carotid plaques at greatest risk of rupture. STATEMENT OF SIGNIFICANCE: Mechanical characterisation of the atherosclerotic plaque cap is of utmost importance for understanding the mechanisms that govern the rupture strength of this tissue in-vivo. Studies has shown that plaque tissue is heterogenous and comprises of many structural components, each of which exhibits a varying mechanical response. However, rupture generally is located to the plaque cap, whereby the stress exerted on this location exceeds its mechanical strength causing failure. This work shows, for the first time, that the underlying collagen fibre architecture of carotid plaque caps governs their strength and stiffness. This study shows that plaque caps with collagen fibres aligned in the predominately circumferential direction experience higher stresses and lower strains before failure while those with predominately axial fibres display the opposite trend. Furthermore, total collagen content was found not to play a dominant role in determining the mechanical response of the tissue. The present study provides critical insights into human atherosclerotic plaque tissue mechanics and offers clinically relevant insights for mechanically sensitive imaging techniques, such as strain-based ultrasound or MRI.


Assuntos
Isquemia Encefálica , Placa Aterosclerótica , Acidente Vascular Cerebral , Artérias Carótidas , Humanos , Estresse Mecânico , Resistência à Tração
4.
Sci Rep ; 11(1): 22247, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782651

RESUMO

The purpose of this study was to characterize the alterations in microstructural organization of arterial tissue using higher-order diffusion magnetic resonance schemes. Three porcine carotid artery models namely; native, collagenase treated and decellularized, were used to estimate the contribution of collagen and smooth muscle cells (SMC) on diffusion signal attenuation using gaussian and non-gaussian schemes. The samples were imaged in a 7 T preclinical scanner. High spatial and angular resolution diffusion weighted images (DWIs) were acquired using two multi-shell (max b-value = 3000 s/mm2) acquisition protocols. The processed DWIs were fitted using monoexponential, stretched-exponential, kurtosis and bi-exponential schemes. Directionally variant and invariant microstructural parametric maps of the three artery models were obtained from the diffusion schemes. The parametric maps were used to assess the sensitivity of each diffusion scheme to collagen and SMC composition in arterial microstructural environment. The inter-model comparison showed significant differences across the considered models. The bi-exponential scheme based slow diffusion compartment (Ds) was highest in the absence of collagen, compared to native and decellularized microenvironments. In intra-model comparison, kurtosis along the radial direction was the highest. Overall, the results of this study demonstrate the efficacy of higher order dMRI schemes in mapping constituent specific alterations in arterial microstructure.


Assuntos
Artérias/diagnóstico por imagem , Artérias/metabolismo , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador , Algoritmos , Animais , Biomarcadores , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/metabolismo , Análise de Dados , Interpretação de Imagem Assistida por Computador/métodos , Imuno-Histoquímica , Modelos Teóricos , Suínos
5.
Artigo em Inglês | MEDLINE | ID: mdl-32984262

RESUMO

The cerebral meninges, made up of the dura, arachnoid, and pia mater, is a tri-layer membrane that surrounds the brain and the spinal cord and has an important function in protecting the brain from injury. Understanding its mechanical behavior is important to ensure the accuracy of finite element (FE) head model simulations which are commonly used in the study of traumatic brain injury (TBI). Mechanical characterization of freshly excised porcine dura-arachnoid mater (DAM) was achieved using uniaxial tensile testing and bulge inflation testing, highlighting the dependency of the identified parameters on the testing method. Experimental data was fit to the Ogden hyperelastic material model with best fit material parameters of µ = 450 ± 190 kPa and α = 16.55 ± 3.16 for uniaxial testing, and µ = 234 ± 193 kPa and α = 8.19 ± 3.29 for bulge inflation testing. The average ultimate tensile strength of the DAM was 6.91 ± 2.00 MPa (uniaxial), and the rupture stress at burst was 2.08 ± 0.41 MPa (inflation). A structural analysis using small angle light scattering (SALS) revealed that while local regions of highly aligned fibers exist, globally, there is no preferred orientation of fibers and the cerebral DAM can be considered to be structurally isotropic. This confirms the results of the uniaxial mechanical testing which found that there was no statistical difference between samples tested in the longitudinal and transversal direction (p = 0.13 for µ, p = 0.87 for α). A finite element simulation of a craniotomy procedure following brain swelling revealed that the mechanical properties of the meninges are important for predicting accurate stress and strain fields in the brain and meninges. Indeed, a simulation using a common linear elastic representation of the meninges was compared to the present material properties (Ogden model) and the intracranial pressure was found to differ by a factor of 3. The current study has provided researchers with primary experimental data on the mechanical behavior of the meninges which will further improve the accuracy of FE head models used in TBI.

6.
J Mech Behav Biomed Mater ; 109: 103771, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32347213

RESUMO

Collagen fibre degradation is a strain-dependent process, whereby the magnitude of experienced strain dictates the rate of enzymatic cleavage. Studies have identified conflicting findings as to whether strain inhibits or enhances collagen degradation, which may be explained by the tissue type and tissue scale investigated, as well as the strain range considered. The aim of this study is to identify, for the first time, the strain-dependent degradation response of intact arterial vessels experiencing physiological pressures and apply these findings to a computational model to better understand degenerative arterial diseases, such as aneurysms. To achieve this, a series of quasi-static pressure inflation experiments were carried out on intact arteries in the presence of purified bacterial collagenase at physiologically relevant pressures to investigate collagen matrix degradation in the vascular wall. A complementary computational model was developed to explore the complex role of pressure, non-collagenous matrix contribution, and collagen fibre crimp in the ultimate degradation response of the vessel. Pressure induced inflation-degradation results identified an increased rate of vessel expansion and reduced time to failure with increasing pressure in the vessels. Interestingly, our computational model was able to capture this same response, including the elevated rates of degradation which occur at low pressures. These findings highlight the critical role of strain in collagen degradation, particularly in cases of arterial disease, such as aneurysm formation, whereby structural integrity may be compromised.


Assuntos
Artérias , Colágeno , Colagenases , Progressão da Doença , Matriz Extracelular , Humanos
7.
Phys Med Biol ; 62(23): 8850-8868, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120867

RESUMO

Diffusion magnetic resonance imaging (dMRI) can provide insights into the microstructure of intact arterial tissue. The current study employed high magnetic field MRI to obtain ultra-high resolution dMRI at an isotropic voxel resolution of 117 µm3 in less than 2 h of scan time. A parameter selective single shell (128 directions) diffusion-encoding scheme based on Stejskel-Tanner sequence with echo-planar imaging (EPI) readout was used. EPI segmentation was used to reduce the echo time (TE) and to minimise the susceptibility-induced artefacts. The study utilised the dMRI analysis with diffusion tensor imaging (DTI) framework to investigate structural heterogeneity in intact arterial tissue and to quantify variations in tissue composition when the tissue is cut open and flattened. For intact arterial samples, the region of interest base comparison showed significant differences in fractional anisotropy and mean diffusivity across the media layer (p < 0.05). For open cut flat samples, DTI based directionally invariant indices did not show significant differences across the media layer. For intact samples, fibre tractography based indices such as calculated helical angle and fibre dispersion showed near circumferential alignment and a high degree of fibre dispersion, respectively. This study demonstrates the feasibility of fast dMRI acquisition with ultra-high spatial and angular resolution at 7 T. Using the optimised sequence parameters, this study shows that DTI based markers are sensitive to local structural changes in intact arterial tissue samples and these markers may have clinical relevance in the diagnosis of atherosclerosis and aneurysm.


Assuntos
Artérias Carótidas/ultraestrutura , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Imagem Ecoplanar/métodos , Animais , Anisotropia , Artefatos , Artérias Carótidas/cirurgia , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa