Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305050

RESUMO

In this work, we combine nonlinear system control techniques with next-generation reservoir computing, a best-in-class machine learning approach for predicting the behavior of dynamical systems. We demonstrate the performance of the controller in a series of control tasks for the chaotic Hénon map, including controlling the system between unstable fixed points, stabilizing the system to higher order periodic orbits, and to an arbitrary desired state. We show that our controller succeeds in these tasks, requires only ten data points for training, can control the system to a desired trajectory in a single iteration, and is robust to noise and modeling error.

2.
Chaos ; 33(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486668

RESUMO

Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.

3.
Chaos ; 32(11): 113107, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36456323

RESUMO

Reservoir computing is a machine learning approach that can generate a surrogate model of a dynamical system. It can learn the underlying dynamical system using fewer trainable parameters and, hence, smaller training data sets than competing approaches. Recently, a simpler formulation, known as next-generation reservoir computing, removed many algorithm metaparameters and identified a well-performing traditional reservoir computer, thus simplifying training even further. Here, we study a particularly challenging problem of learning a dynamical system that has both disparate time scales and multiple co-existing dynamical states (attractors). We compare the next-generation and traditional reservoir computer using metrics quantifying the geometry of the ground-truth and forecasted attractors. For the studied four-dimensional system, the next-generation reservoir computing approach uses ∼ 1.7 × less training data, requires 10 × shorter "warmup" time, has fewer metaparameters, and has an ∼ 100 × higher accuracy in predicting the co-existing attractor characteristics in comparison to a traditional reservoir computer. Furthermore, we demonstrate that it predicts the basin of attraction with high accuracy. This work lends further support to the superior learning ability of this new machine learning algorithm for dynamical systems.

4.
Chaos ; 32(9): 093137, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36182396

RESUMO

Forecasting the behavior of high-dimensional dynamical systems using machine learning requires efficient methods to learn the underlying physical model. We demonstrate spatiotemporal chaos prediction using a machine learning architecture that, when combined with a next-generation reservoir computer, displays state-of-the-art performance with a computational time 10- 10 times faster for training process and training data set ∼ 10 times smaller than other machine learning algorithms. We also take advantage of the translational symmetry of the model to further reduce the computational cost and training data, each by a factor of ∼10.

5.
Chaos ; 31(10): 103127, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717323

RESUMO

Reservoir computers are powerful tools for chaotic time series prediction. They can be trained to approximate phase space flows and can thus both predict future values to a high accuracy and reconstruct the general properties of a chaotic attractor without requiring a model. In this work, we show that the ability to learn the dynamics of a complex system can be extended to systems with multiple co-existing attractors, here a four-dimensional extension of the well-known Lorenz chaotic system. We demonstrate that a reservoir computer can infer entirely unexplored parts of the phase space; a properly trained reservoir computer can predict the existence of attractors that were never approached during training and, therefore, are labeled as unseen. We provide examples where attractor inference is achieved after training solely on a single noisy trajectory.

6.
Entropy (Basel) ; 23(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34441128

RESUMO

Quantum key distribution (QKD) systems provide a method for two users to exchange a provably secure key. Synchronizing the users' clocks is an essential step before a secure key can be distilled. Qubit-based synchronization protocols directly use the transmitted quantum states to achieve synchronization and thus avoid the need for additional classical synchronization hardware. Previous qubit-based synchronization protocols sacrifice secure key either directly or indirectly, and all known qubit-based synchronization protocols do not efficiently use all publicly available information published by the users. Here, we introduce a Bayesian probabilistic algorithm that incorporates all published information to efficiently find the clock offset without sacrificing any secure key. Additionally, the output of the algorithm is a probability, which allows us to quantify our confidence in the synchronization. For demonstration purposes, we present a model system with accompanying simulations of an efficient three-state BB84 prepare-and-measure protocol with decoy states. We use our algorithm to exploit the correlations between Alice's published basis and mean photon number choices and Bob's measurement outcomes to probabilistically determine the most likely clock offset. We find that we can achieve a 95 percent synchronization confidence in only 4140 communication bin widths, meaning we can tolerate clock drift approaching 1 part in 4140 in this example when simulating this system with a dark count probability per communication bin width of 8×10-4 and a received mean photon number of 0.01.

7.
Chaos ; 29(12): 123108, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893676

RESUMO

We explore the hyperparameter space of reservoir computers used for forecasting of the chaotic Lorenz '63 attractor with Bayesian optimization. We use a new measure of reservoir performance, designed to emphasize learning the global climate of the forecasted system rather than short-term prediction. We find that optimizing over this measure more quickly excludes reservoirs that fail to reproduce the climate. The results of optimization are surprising: the optimized parameters often specify a reservoir network with very low connectivity. Inspired by this observation, we explore reservoir designs with even simpler structure and find well-performing reservoirs that have zero spectral radius and no recurrence. These simple reservoirs provide counterexamples to widely used heuristics in the field and may be useful for hardware implementations of reservoir computers.

8.
Opt Lett ; 43(16): 3806-3809, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30106888

RESUMO

The interference of two photons at a beam splitter is at the core of many quantum photonic technologies, such as quantum key distribution or linear-optics quantum computing. Observing high-visibility interference is challenging because of the difficulty of realizing indistinguishable single-photon sources. Here, we perform a two-photon interference experiment using phase-randomized weak coherent states with different mean photon numbers. We place a tight upper bound on the expected coincidences for the case when the incident wavepackets contain single photons, allowing us to observe the Hong-Ou-Mandel effect. We find that the interference visibility is at least as large as 0.995-0.013+0.005.

9.
Chaos ; 28(12): 123119, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599514

RESUMO

Reservoir computing is a neural network approach for processing time-dependent signals that has seen rapid development in recent years. Physical implementations of the technique using optical reservoirs have demonstrated remarkable accuracy and processing speed at benchmark tasks. However, these approaches require an electronic output layer to maintain high performance, which limits their use in tasks such as time-series prediction, where the output is fed back into the reservoir. We present here a reservoir computing scheme that has rapid processing speed both by the reservoir and the output layer. The reservoir is realized by an autonomous, time-delay, Boolean network configured on a field-programmable gate array. We investigate the dynamical properties of the network and observe the fading memory property that is critical for successful reservoir computing. We demonstrate the utility of the technique by training a reservoir to learn the short- and long-term behavior of a chaotic system. We find accuracy comparable to state-of-the-art software approaches of a similar network size, but with a superior real-time prediction rate up to 160 MHz.

10.
Opt Express ; 25(18): 21861-21876, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041478

RESUMO

Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and "twilighting". We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

11.
Chaos ; 26(9): 094810, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27781448

RESUMO

Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

12.
Chaos ; 25(8): 083113, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26328564

RESUMO

We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.


Assuntos
Algoritmos , Modelos Teóricos , Fatores de Tempo
13.
Opt Express ; 22(12): 14382-91, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977535

RESUMO

We realize a strongly dispersive material with large tunable group velocity dispersion (GVD) in a commercially-available photonic crystal fiber. Specifically, we pump the fiber with a two-frequency pump field that induces an absorbing resonance adjacent to an amplifying resonance via the stimulated Brillouin processes. We demonstrate all-optical control of the GVD by measuring the linear frequency chirp impressed on a 28-nanosecond-duration optical pulse by the medium and find that it is tunable over the range ± 7.8 ns(2)/m. The maximum observed value of the GVD is 10(9) times larger than that in a typical single-mode silica optical fiber. Our observations are in good agreement with a theoretical model of the process.

14.
Opt Express ; 22(4): 4705-13, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663789

RESUMO

We study the symbolic dynamics of a stochastic excitable optical system with periodic forcing. Specifically, we consider a directly modulated semiconductor laser with optical feedback in the low frequency fluctuations (LFF) regime. We use a method of symbolic time-series analysis that allows us to uncover serial correlations in the sequence of intensity dropouts. By transforming the sequence of inter-dropout intervals into a sequence of symbolic patterns and analyzing the statistics of the patterns, we unveil correlations among several consecutive dropouts and we identify clear changes in the dynamics as the modulation amplitude increases. To confirm the robustness of the observations, the experiments were performed using two lasers under different feedback conditions. Simulations of the Lang-Kobayashi (LK) model, including spontaneous emission noise, are found to be in good agreement with the observations, providing an interpretation of the correlations present in the dropout sequence as due to the interplay of the underlying attractor topology, the external forcing, and the noise that sustains the dropout events.

15.
Nat Commun ; 15(1): 3886, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719856

RESUMO

Machine learning provides a data-driven approach for creating a digital twin of a system - a digital model used to predict the system behavior. Having an accurate digital twin can drive many applications, such as controlling autonomous systems. Often, the size, weight, and power consumption of the digital twin or related controller must be minimized, ideally realized on embedded computing hardware that can operate without a cloud-computing connection. Here, we show that a nonlinear controller based on next-generation reservoir computing can tackle a difficult control problem: controlling a chaotic system to an arbitrary time-dependent state. The model is accurate, yet it is small enough to be evaluated on a field-programmable gate array typically found in embedded devices. Furthermore, the model only requires 25.0 ± 7.0 nJ per evaluation, well below other algorithms, even without systematic power optimization. Our work represents the first step in deploying efficient machine learning algorithms to the computing "edge."

16.
Opt Express ; 21(11): 13094-104, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736563

RESUMO

Phase control is crucial to the operation of coherent beam combining systems, whether for laser radar or high-power beam combining. We have recently demonstrated a design for a multi-aperture, coherently combined, synchronized- and phased-array slow light laser radar (SLIDAR) that is capable of scanning in two dimensions with dynamic group delay compensation. Here we describe in detail the optical phase locking system used in the design. The phase locking system achieves an estimated Strehl ratio of 0.8, and signals from multiple emitting apertures are phase locked simultaneously to within π/5 radians (1/10 wave) after propagation through 2.2 km of single-mode fiber per channel. Phase locking performance is maintained even as two independent slow light mechanisms are utilized simultaneously.

17.
Opt Lett ; 38(5): 622-4, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455244

RESUMO

We investigate a decoy-state quantum key distribution (QKD) scheme with a sub-Poissonian single-photon source, which is generated on demand by scattering a coherent state off a two-level system in a one-dimensional waveguide. We show that, compared to coherent state decoy-state QKD, there is a two-fold increase of the key generation rate. Furthermore, the performance is shown to be robust against both parameter variations and loss effects of the system.

18.
Opt Lett ; 38(21): 4331-4, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24177086

RESUMO

We demonstrate experimentally how to harness quasi-periodic dynamics in a semiconductor laser with dual optical feedback for measuring subwavelength changes in each arm of the cavity simultaneously. We exploit the multifrequency spectrum of quasi-periodic dynamics and show that independent frequency shifts are mapped uniquely to two-dimensional displacements of the arms in the external cavity. Considering a laser diode operating at telecommunication wavelength λ≈1550 nm, we achieve an average nanoscale resolution of approximately 9.8 nm (~λ/160).

19.
Phys Rev Lett ; 111(9): 090502, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033010

RESUMO

We propose a new scheme for quantum computation using flying qubits--propagating photons in a one-dimensional waveguide interacting with matter qubits. Photon-photon interactions are mediated by the coupling to a four-level system, based on which photon-photon π-phase gates (CONTROLLED-NOT) can be implemented for universal quantum computation. We show that high gate fidelity is possible, given recent dramatic experimental progress in superconducting circuits and photonic-crystal waveguides. The proposed system can be an important building block for future on-chip quantum networks.

20.
Phys Rev Lett ; 110(10): 104102, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521258

RESUMO

We study experimentally the synchronization patterns in time-delayed directed Boolean networks of excitable systems. We observe a transition in the network dynamics when the refractory time of the individual systems is adjusted. When the refractory time is on the same order of magnitude as the mean link time delays or the heterogeneities of the link time delays, cluster synchronization patterns change, or are suppressed entirely, respectively. We also show that these transitions occur when we change the properties of only a small number of driver nodes identified by their larger in degree; hence, the synchronization patterns can be controlled locally by these nodes. Our findings have implications for synchronization in biological neural networks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa