Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Respir Res ; 25(1): 37, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238778

RESUMO

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/métodos , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
2.
Am J Respir Crit Care Med ; 202(8): 1081-1087, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33054329

RESUMO

Protective ventilation strategies for the injured lung currently revolve around the use of low Vt, ostensibly to avoid volutrauma, together with positive end-expiratory pressure to increase the fraction of open lung and reduce atelectrauma. Protective ventilation is currently applied in a one-size-fits-all manner, and although this practical approach has reduced acute respiratory distress syndrome deaths, mortality is still high and improvements are at a standstill. Furthermore, how to minimize ventilator-induced lung injury (VILI) for any given lung remains controversial and poorly understood. Here we present a hypothesis of VILI pathogenesis that potentially serves as a basis upon which minimally injurious ventilation strategies might be developed. This hypothesis is based on evidence demonstrating that VILI begins in isolated lung regions manifesting a Permeability-Originated Obstruction Response (POOR) in which alveolar leak leads to surfactant dysfunction and increases local tissue stresses. VILI progresses topographically outward from these regions in a POOR-get-POORer fashion unless steps are taken to interrupt it. We propose that interrupting the POOR-get-POORer progression of lung injury relies on two principles: 1) open the lung to minimize the presence of heterogeneity-induced stress concentrators that are focused around the regions of atelectasis, and 2) ventilate in a patient-dependent manner that minimizes the number of lung units that close during each expiration so that they are not forced to rerecruit during the subsequent inspiration. These principles appear to be borne out in both patient and animal studies in which expiration is terminated before derecruitment of lung units has enough time to occur.


Assuntos
Prevenção Primária/métodos , Atelectasia Pulmonar/prevenção & controle , Edema Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/fisiopatologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Doença Aguda , Fenômenos Biomecânicos , Doença Crônica , Feminino , Humanos , Masculino , Monitorização Fisiológica , Prognóstico , Atelectasia Pulmonar/etiologia , Edema Pulmonar/etiologia , Síndrome do Desconforto Respiratório/terapia , Testes de Função Respiratória
4.
Ann Biomed Eng ; 51(5): 1052-1062, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37000319

RESUMO

Acute respiratory distress syndrome (ARDS) has a high mortality rate that is due in part to ventilator-induced lung injury (VILI). Nevertheless, the majority of patients eventually recover, which means that their innate reparative capacities eventually prevail. Since there are currently no medical therapies for ARDS, minimizing its mortality thus amounts to achieving an optimal balance between spontaneous tissue repair versus the generation of VILI. In order to understand this balance better, we developed a mathematical model of the onset and recovery of VILI that incorporates two hypotheses: (1) a novel multi-hit hypothesis of epithelial barrier failure, and (2) a previously articulated rich-get-richer hypothesis of the interaction between atelectrauma and volutrauma. Together, these concepts explain why VILI appears in a normal lung only after an initial latent period of injurious mechanical ventilation. In addition, they provide a mechanistic explanation for the observed synergy between atelectrauma and volutrauma. The model recapitulates the key features of previously published in vitro measurements of barrier function in an epithelial monolayer and in vivo measurements of lung function in mice subjected to injurious mechanical ventilation. This provides a framework for understanding the dynamic balance between factors responsible for the generation of and recovery from VILI.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Camundongos , Animais , Respiração Artificial , Volume de Ventilação Pulmonar , Células Epiteliais , Pulmão
5.
Front Netw Physiol ; 3: 1257710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020240

RESUMO

This study developed and investigated a comprehensive multiscale computational model of a mechanically ventilated ARDS lung to elucidate the underlying mechanisms contributing to the development or prevention of VILI. This model is built upon a healthy lung model that incorporates realistic airway and alveolar geometry, tissue distensibility, and surfactant dynamics. Key features of the ARDS model include recruitment and derecruitment (RD) dynamics, alveolar tissue viscoelasticity, and surfactant deficiency. This model successfully reproduces realistic pressure-volume (PV) behavior, dynamic surface tension, and time-dependent descriptions of RD events as a function of the ventilation scenario. Simulations of Time-Controlled Adaptive Ventilation (TCAV) modes, with short and long durations of exhalation (T Low - and T Low +, respectively), reveal a higher incidence of RD for T Low + despite reduced surface tensions due to interfacial compression. This finding aligns with experimental evidence emphasizing the critical role of timing in protective ventilation strategies. Quantitative analysis of energy dissipation indicates that while alveolar recruitment contributes only a small fraction of total energy dissipation, its spatial concentration and brief duration may significantly contribute to VILI progression due to its focal nature and higher intensity. Leveraging the computational framework, the model may be extended to facilitate the development of personalized protective ventilation strategies to enhance patient outcomes. As such, this computational modeling approach offers valuable insights into the complex dynamics of VILI that may guide the optimization of ventilation strategies in ARDS management.

6.
Front Physiol ; 14: 1287416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028774

RESUMO

Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn's cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales.

7.
J Vis Exp ; (185)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35829646

RESUMO

In vitro microfluidic experimentation holds great potential to reveal many insights into the microphysiological phenomena occurring in conditions such as acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). However, studies in microfluidic channels with dimensions physiologically relevant to the terminal bronchioles of the human lung currently face several challenges, especially due to difficulties in establishing appropriate cell culture conditions, including media flow rates, within a given culture environment. The presented protocol describes an image-based approach to evaluate the structure of NCI-H441 human lung epithelial cells cultured in an oxygen-impermeable microfluidic channel with dimensions physiologically relevant to the terminal bronchioles of the human lung. Using phalloidin-based filamentous-actin staining, the cytoskeletal structures of the cells are revealed by confocal laser scanning microscopy, allowing for the visualization of individual as well as layered cells. Subsequent quantification determines whether the cell culture conditions being employed are producing uniform monolayers suitable for further experimentation. The protocol describes cell culture and layer evaluation methods in microfluidic channels and traditional fixed-well environments. This includes channel construction, cell culture and requisite conditions, fixation, permeabilization and staining, confocal microscopic imaging, image processing, and data analysis.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas de Cultura de Células , Células Epiteliais , Humanos , Dispositivos Lab-On-A-Chip , Pulmão
8.
J R Soc Interface ; 19(191): 20220062, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35673857

RESUMO

Computational modelling of the lungs is an active field of study that integrates computational advances with lung biophysics, biomechanics, physiology and medical imaging to promote individualized diagnosis, prognosis and therapy evaluation in lung diseases. The complex and hierarchical architecture of the lung offers a rich, but also challenging, research area demanding a cross-scale understanding of lung mechanics and advanced computational tools to effectively model lung biomechanics in both health and disease. Various approaches have been proposed to study different aspects of respiration, ranging from compartmental to discrete micromechanical and continuum representations of the lungs. This article reviews several developments in computational lung modelling and how they are integrated with preclinical and clinical data. We begin with a description of lung anatomy and how different tissue components across multiple length scales affect lung mechanics at the organ level. We then review common physiological and imaging data acquisition methods used to inform modelling efforts. Building on these reviews, we next present a selection of model-based paradigms that integrate data acquisitions with modelling to understand, simulate and predict lung dynamics in health and disease. Finally, we highlight possible future directions where computational modelling can improve our understanding of the structure-function relationship in the lung.


Assuntos
Pneumologia , Fenômenos Biomecânicos , Biofísica , Simulação por Computador , Pulmão/diagnóstico por imagem , Pulmão/fisiologia
9.
Biosensors (Basel) ; 12(6)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35735538

RESUMO

Biophysical insults that either reduce barrier function (COVID-19, smoke inhalation, aspiration, and inflammation) or increase mechanical stress (surfactant dysfunction) make the lung more susceptible to atelectrauma. We investigate the susceptibility and time-dependent disruption of barrier function associated with pulmonary atelectrauma of epithelial cells that occurs in acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). This in vitro study was performed using Electric Cell-substrate Impedance Sensing (ECIS) as a noninvasive evaluating technique for repetitive stress stimulus/response on monolayers of the human lung epithelial cell line NCI-H441. Atelectrauma was mimicked through recruitment/derecruitment (RD) of a semi-infinite air bubble to the fluid-occluded micro-channel. We show that a confluent monolayer with a high level of barrier function is nearly impervious to atelectrauma for hundreds of RD events. Nevertheless, barrier function is eventually diminished, and after a critical number of RD insults, the monolayer disintegrates exponentially. Confluent layers with lower initial barrier function are less resilient. These results indicate that the first line of defense from atelectrauma resides with intercellular binding. After disruption, the epithelial layer community protection is diminished and atelectrauma ensues. ECIS may provide a platform for identifying damaging stimuli, ventilation scenarios, or pharmaceuticals that can reduce susceptibility or enhance barrier-function recovery.


Assuntos
COVID-19 , Atelectasia Pulmonar/etiologia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , COVID-19/complicações , COVID-19/fisiopatologia , Impedância Elétrica , Humanos , Pulmão/fisiopatologia , Pneumonia Aspirativa/complicações , Pneumonia Aspirativa/fisiopatologia , Atelectasia Pulmonar/fisiopatologia , Lesão por Inalação de Fumaça/etiologia , Lesão por Inalação de Fumaça/fisiopatologia , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
10.
Biomed Eng Educ ; 2(1): 1-16, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35599985

RESUMO

This paper provides a synopsis of discussions related to the Learning Environments track of the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. The Learning Environments track had six interactive workshops that provided facilitated discussion and provide recommendations in the areas of: (1) Authentic project/problem identification in clinical, industrial, and global settings, (2) Experiential problem/project-based learning within courses, (3) Experiential learning in co-curricular learning settings, (4) Team-based learning, (5) Teaching to reach a diverse classroom, and (6) innovative platforms and pedagogy. A summary of the findings, best practices and recommendations from each of the workshops is provided under separate headings below, and a list of resources is provided at the end of this paper.

11.
J Appl Physiol (1985) ; 133(5): 1093-1105, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36135956

RESUMO

Ventilator-induced lung injury (VILI) is a significant risk for patients with acute respiratory distress syndrome (ARDS). Management of the patient with ARDS is currently dominated by the use of low tidal volume mechanical ventilation, the presumption being that this mitigates overdistension (OD) injury to the remaining normal lung tissue. Evidence exists, however, that it may be more important to avoid cyclic recruitment and derecruitment (RD) of lung units, although the relative roles of OD and RD in VILI remain unclear. Forty pigs had a heterogeneous lung injury induced by Tween instillation and were randomized into four groups (n = 10 each) with higher (↑) or lower (↓) levels of OD and/or RD imposed using airway pressure release ventilation (APRV). OD was increased by setting inspiratory airway pressure to 40 cmH2O and lessened with 28 cmH2O. RD was attenuated using a short duration of expiration (∼0.45 s) and increased with a longer duration (∼1.0 s). All groups developed mild ARDS following injury. RD ↑ OD↑ caused the greatest degree of lung injury as determined by [Formula: see text]/[Formula: see text] ratio (226.1 ± 41.4 mmHg). RD ↑ OD↓ ([Formula: see text]/[Formula: see text]= 333.9 ± 33.1 mmHg) and RD ↓ OD↑ ([Formula: see text]/[Formula: see text] = 377.4 ± 43.2 mmHg) were both moderately injurious, whereas RD ↓ OD↓ ([Formula: see text]/[Formula: see text] = 472.3 ± 22.2 mmHg; P < 0.05) was least injurious. Both tidal volume and driving pressure were essentially identical in the RD ↑ OD↓ and RD ↓ OD↑ groups. We, therefore, conclude that considerations of expiratory time may be at least as important as pressure for safely ventilating the injured lung.NEW & NOTEWORTHY In a large animal model of ARDS, recruitment/derecruitment caused greater VILI than overdistension, whereas both mechanisms together caused severe lung damage. These findings suggest that eliminating cyclic recruitment and derecruitment during mechanical ventilation should be a preeminent management goal for the patient with ARDS. The airway pressure release ventilation (APRV) mode of mechanical ventilation can achieve this if delivered with an expiratory duration (TLow) that is brief enough to prevent derecruitment at end expiration.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Lesão Pulmonar Aguda/etiologia , Pulmão , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/terapia , Suínos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
12.
Lab Chip ; 10(3): 303-12, 2010 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-20091001

RESUMO

We develop an agent-based computational simulation to investigate the complex behavior exhibited by an initially regularly spaced train of immiscible droplets passing through a simple two-branch microfluidic network wherein a channel splits into two asymmetric branches that reconnect downstream. As observed by Fuerstman et al. (M. J. Fuerstman, P. Garstecki and G. M. Whitesides, Science, 2007, 315, 828-832), variations in the flow rates within each segment induced by the droplets cause complex droplet spacing patterns to occur in the outlet, leading to periodic and aperiodic behavior. Our model utilizes a highly efficient agent-based modeling approach, where the flow-rates in each section of the network are determined using fundamental concepts of viscous and interfacial flows. Simulations spanned physical parameter space that includes variation in droplet spacing, surface tension, viscosity and geometry. These simulations demonstrate qualitative agreement with the findings of Fuerstman et al., including the prediction of interspersed periodic and aperiodic domains. We predict that decreasing droplet contribution to the overall pressure drop (reducing the tube radius or surface tension, increasing the viscosity) would result in increased complexity. The geometric configuration of the system is also critical to pattern formation; a greater disparity in branch length generally results in higher-order periodicities in the outflow channel. The aperiodic results indicate the likelihood of chaotic behavior arising from this purely deterministic system. The consideration of fundamental fluid mechanical principles coupled to the agent-based simulation technique may provide a highly efficient means for the design and analysis of more complex systems.


Assuntos
Algoritmos , Misturas Complexas/química , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Químicos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Front Physiol ; 11: 941, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922307

RESUMO

We present a computational multi-scale model of an adult human lung that combines dynamic surfactant physicochemical interactions and parenchymal tethering between ~16 generations of airways and subtended acini. This model simulates the healthy lung by modeling nonlinear stress distributions from airway/alveolar interdependency. In concert with multi-component surfactant transport processes, this serves to stabilize highly compliant interacting structures. This computational model, with ~10 k degrees of freedom, demonstrates physiological processes in the normal lung such as multi-layer surfactant transport and pressure-volume hysteresis behavior. Furthermore, this model predicts non-equilibrium stress distributions due to compliance mismatches between airway and alveolar structures. This computational model provides a baseline for the exploration of multi-scale interactions of pathological conditions that can further our understanding of disease processes and guide the development of protective ventilation strategies for the treatment of acute respiratory distress syndrome (ARDS).

14.
Crit Care Explor ; 2(12): e0299, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354673

RESUMO

OBJECTIVES: Elucidate how the degree of ventilator-induced lung injury due to atelectrauma that is produced in the injured lung during mechanical ventilation is determined by both the timing and magnitude of the airway pressure profile. DESIGN: A computational model of the injured lung provides a platform for exploring how mechanical ventilation parameters potentially modulate atelectrauma and volutrauma. This model incorporates the time dependence of lung recruitment and derecruitment, and the time-constant of lung emptying during expiration as determined by overall compliance and resistance of the respiratory system. SETTING: Computational model. SUBJECTS: Simulated scenarios representing patients with both normal and acutely injured lungs. MEASUREMENTS AND MAIN RESULTS: Protective low-tidal volume ventilation (Low-Vt) of the simulated injured lung avoided atelectrauma through the elevation of positive end-expiratory pressure while maintaining fixed tidal volume and driving pressure. In contrast, airway pressure release ventilation avoided atelectrauma by incorporating a very brief expiratory duration () that both prevents enough time for derecruitment and limits the minimum alveolar pressure prior to inspiration. Model simulations demonstrated that has an effective threshold value below which airway pressure release ventilation is safe from atelectrauma while maintaining a tidal volume and driving pressure comparable with those of Low-Vt. This threshold is strongly influenced by the time-constant of lung-emptying. CONCLUSIONS: Low-Vt and airway pressure release ventilation represent markedly different strategies for the avoidance of ventilator-induced lung injury, primarily involving the manipulation of positive end-expiratory pressure and , respectively. can be based on exhalation flow values, which may provide a patient-specific approach to protective ventilation.

15.
Ann Biomed Eng ; 48(3): 905-912, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32026231

RESUMO

This paper provides a synopsis of discussions related to biomedical engineering core curricula that occurred at the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. This discussion focused on six key questions: QI: Is there a core curriculum, and if so, what are its components? QII: How does our purported core curriculum prepare students for careers, particularly in industry? QIII: How does design distinguish BME/BIOE graduates from other engineers? QIV: What is the state of engineering analysis and systems-level modeling in BME/BIOE curricula? QV: What is the role of data science in BME/BIOE undergraduate education? QVI: What core experimental skills are required for BME/BIOE undergrads? s. Indeed, BME/BIOI core curricula exists and has matured to emphasize interdisciplinary topics such as physiology, instrumentation, mechanics, computer programming, and mathematical modeling. Departments demonstrate their own identities by highlighting discipline-specific sub-specialties. In addition to technical competence, Industry partners most highly value our students' capacity for problem solving and communication. As such, BME/BIOE curricula includes open-ended projects that address unmet patient and clinician needs as primary methods to prepare graduates for careers in industry. Culminating senior design experiences distinguish BME/BIOE graduates through their development of client-centered engineering solutions to healthcare problems. Finally, the overall BME/BIOE curriculum is not stagnant-it is clear that data science will become an ever-important element of our students' training and that new methods to enhance student engagement will be of pedagogical importance as we embark on the next decade.


Assuntos
Engenharia Biomédica/educação , Currículo , Ciência de Dados , Humanos , Estudantes , Universidades
16.
Biophys J ; 96(1): 312-27, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18849416

RESUMO

In this study, we investigate the sorption of pulmonary surfactant (Infasurf, Ony, Buffalo, NY) occurring at the air-liquid interface of a semi-infinite finger of air as it oscillates and progresses along a small rigid tube (1 mm inner diameter) occluded with a surfactant-doped solution of concentrations C=0.1, 0.05, or 0.01 mg/mL. This simple experimental model of pulmonary airway reopening is designed to examine how altering the fluid flow field may lower reopening pressures and lead to a reduction in airway wall damage that is associated with the mechanical ventilation of an obstructed pulmonary system in airways of the deep lung with depleted endogenous and little exogenous surfactant. We analyzed a range of pulsatile flow scenarios by varying the oscillation frequency (0< or =f < or =1 Hz), the oscillation flow waveform, and the steady flow rate (Q(steady)=0.1 or 0.01 mL/min). These experimental studies indicate that a high frequency (1 Hz, amplitude = 5 mm), fast-forward oscillation waveform superimposed onto a fast steady flow (0.1 mL/min) substantially reduces mean reopening pressures (31%) as a consequence of the modified flow field and the commensurate increase in surfactant transport and adsorption. This result suggests that imposing high frequency, low amplitude oscillations during airway reopening will help to diminish ventilator-induced lung injury.


Assuntos
Modelos Biológicos , Movimento (Física) , Periodicidade , Surfactantes Pulmonares/metabolismo , Ar , Algoritmos , Difusão , Humanos , Pulmão/fisiologia , Pulmão/fisiopatologia , Pressão , Soluções/metabolismo , Fatores de Tempo , Viscosidade
17.
Discrete Continuous Dyn Syst Ser B ; 11(2): 519-540, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23024610

RESUMO

The goal of this paper is to examine the evaluation of interfacial stresses using a standard, finite difference based, immersed boundary method (IMBM). This calculation is not trivial for two fundamental reasons. First, the immersed boundary is represented by a localized boundary force which is distributed to the underlying fluid grid by a discretized delta function. Second, this discretized delta function is used to impose a spatially averaged no-slip condition at the immersed boundary. These approximations can cause errors in interpolating stresses near the immersed boundary.To identify suitable methods for evaluating stresses, we investigate three model flow problems at very low Reynolds numbers. We compare the results of the immersed boundary calculations to those achieved by the boundary element method (BEM). The stress on an immersed boundary may be calculated either by direct evaluation of the fluid stress (FS) tensor or, for the stress jump, by direct evaluation of the locally distributed boundary force (wall stress or WS). Our first model problem is Poiseuille channel flow. Using an analytical solution of the immersed boundary formulation in this simple case, we demonstrate that FS calculations should be evaluated at a distance of approximately one grid spacing inward from the immersed boundary. For a curved immersed boundary we present a procedure for selecting representative interfacial fluid stresses using the concepts from the Poiseuille flow test problem. For the final two model problems, steady state flow over a bump in a channel and unsteady peristaltic pumping, we present an 'exclusion filtering' technique for accurately measuring stresses. Using this technique, these studies show that the immersed boundary method can provide reliable approximations to interfacial stresses.

18.
J Appl Physiol (1985) ; 126(5): 1204-1213, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30676866

RESUMO

In the healthy lung, bronchi are tethered open by the surrounding parenchyma; for a uniform distribution of these peribronchial structures, the solution is well known. An open question remains regarding the effect of a distributed set of collapsed alveoli, as can occur in disease. Here, we address this question by developing and analyzing microscale finite-element models of systems of heterogeneously inflated alveoli to determine the range and extent of parenchymal tethering effects on a neighboring collapsible airway. This analysis demonstrates that micromechanical stresses extend over a range of ∼5 airway radii, and this behavior is dictated primarily by the fraction, not distribution, of collapsed alveoli in that region. A mesoscale analysis of the microscale data identifies an effective shear modulus, Geff, that accurately characterizes the parenchymal support as a function of the average transpulmonary pressure of the surrounding alveoli. We demonstrate the use of this formulation by analyzing a simple model of a single collapsible airway surrounded by heterogeneously inflated alveoli (a "pig-in-a-blanket" model), which quantitatively demonstrates the increased parenchymal compliance and reduction in airway caliber that occurs with decreased parenchymal support from hypoinflated obstructed alveoli. This study provides a building block from which models of an entire lung can be developed in a computationally tenable manner that would simulate heterogeneous pulmonary mechanical interdependence. Such multiscale models could provide fundamental insight toward the development of protective ventilation strategies to reduce the incidence or severity of ventilator-induced lung injury. NEW & NOTEWORTHY A destabilized lung leads to airway and alveolar collapse that can result in catastrophic pulmonary failure. This study elucidates the micromechanical effects of alveolar collapse and determines its range of influence on neighboring collapsible airways. A mesoscale analysis reveals a master relationship that can that can be used in a computationally efficient manner to quantitatively model alveolar mechanical heterogeneity that exists in acute respiratory distress syndrome (ARDS), which predisposes the lung to volutrauma and/or atelectrauma. This analysis may lead to computationally tenable simulations of heterogeneous organ-level mechanical interactions that can illuminate novel protective ventilation strategies to reduce ventilator-induced lung injury.


Assuntos
Pulmão/fisiopatologia , Alvéolos Pulmonares/fisiopatologia , Animais , Brônquios/fisiopatologia , Análise de Elementos Finitos , Humanos , Respiração , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Mecânica Respiratória/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
19.
Respir Physiol Neurobiol ; 163(1-3): 232-43, 2008 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18511356

RESUMO

The delicate structure of the lung epithelium makes it susceptible to surface tension induced injury. For example, the cyclic reopening of collapsed and/or fluid-filled airways during the ventilation of injured lungs generates hydrodynamic forces that further damage the epithelium and exacerbate lung injury. The interactions responsible for epithelial injury during airway reopening are fundamentally multiscale, since air-liquid interfacial dynamics affect global lung mechanics, while surface tension forces operate at the molecular and cellular scales. This article will review the current state-of-knowledge regarding the effect of surface tension forces on (a) the mechanics of airway reopening and (b) epithelial cell injury. Due to the complex nature of the liquid-epithelium system, a combination of computational and experimental techniques are being used to elucidate the mechanisms of surface-tension induced lung injury. Continued research is leading to an integrated understanding of the biomechanical and biological interactions responsible for cellular injury during airway reopening. This information may lead to novel therapies that minimize ventilation induced lung injury.


Assuntos
Líquidos Corporais/metabolismo , Epitélio/fisiologia , Pulmão/fisiologia , Modelos Biológicos , Mecânica Respiratória/fisiologia , Animais , Fenômenos Biomecânicos , Humanos , Pneumopatias/etiologia , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Surfactantes Pulmonares/metabolismo , Estresse Mecânico , Tensão Superficial
20.
J Appl Physiol (1985) ; 122(5): 1167-1178, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057816

RESUMO

We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (PHyd) and capillary (PCap) pressure drops. These studies demonstrate the extraordinary importance of PCap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates PCap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury.NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury.


Assuntos
Pulmão/metabolismo , Troca Gasosa Pulmonar/fisiologia , Surfactantes Pulmonares/metabolismo , Mecânica Respiratória/fisiologia , Modelos Biológicos , Pressão , Respiração , Tensão Superficial , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa