Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mamm Genome ; 35(2): 122-134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523187

RESUMO

Pruritus is a common irritating sensation that provokes the desire to scratch. Environmental and genetic factors contribute to the onset of pruritus. Moreover, itch can become a major burden when it becomes chronic. Interestingly, the rare Collagen VI alpha 5 (COL6A5) gene variant p.Glu2272* has been identified in two families and an independent patient with chronic neuropathic itch. These patients showed reduced COL6A5 expression in skin and normal skin morphology. However, little progress has been made until now toward understanding the relationships between this mutation and chronic itch. Therefore, we developed the first mouse model that recapitulates COL6A5-p.Glu2272* mutation using the CRISPR-Cas technology and characterized this new mouse model. The mutant mRNA, measured by RT-ddPCR, was expressed at normal levels in dorsal root ganglia and was decreased in skin. The functional exploration showed effects of the mutation with some sex dysmorphology. Mutant mice had increased skin permeability. Elevated spontaneous scratching and grooming was detected in male and female mutants, with increased anxiety-like behavior in female mutants. These results suggest that the COL6A5-p.Glu2272* mutation found in patients contributes to chronic itch and induces in mice additional behavioral changes. The COL6A5-p.Glu2272* mouse model could elucidate the pathophysiological mechanisms underlying COL6A5 role in itch and help identify potential new therapeutic targets.


Assuntos
Colágeno Tipo VI , Modelos Animais de Doenças , Mutação , Prurido , Animais , Camundongos , Prurido/genética , Prurido/patologia , Feminino , Masculino , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Pele/patologia , Pele/metabolismo , Doença Crônica , Humanos , Sistemas CRISPR-Cas
2.
BMC Bioinformatics ; 24(1): 28, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703114

RESUMO

BACKGROUND: In individuals or animals suffering from genetic or acquired diseases, it is important to identify which clinical or phenotypic variables can be used to discriminate between disease and non-disease states, the response to treatments or sexual dimorphism. However, the data often suffers from low number of samples, high number of variables or unbalanced experimental designs. Moreover, several parameters can be recorded in the same test. Thus, correlations should be assessed, and a more complex statistical framework is necessary for the analysis. Packages already exist that provide analysis tools, but they are not found together, rendering the decision method and implementation difficult for non-statisticians. RESULT: We present Gdaphen, a fast joint-pipeline allowing the identification of most important qualitative and quantitative predictor variables to discriminate between genotypes, treatments, or sex. Gdaphen takes as input behavioral/clinical data and uses a Multiple Factor Analysis (MFA) to deal with groups of variables recorded from the same individuals or anonymize genotype-based recordings. Gdaphen uses as optimized input the non-correlated variables with 30% correlation or higher on the MFA-Principal Component Analysis (PCA), increasing the discriminative power and the classifier's predictive model efficiency. Gdaphen can determine the strongest variables that predict gene dosage effects thanks to the General Linear Model (GLM)-based classifiers or determine the most discriminative not linear distributed variables thanks to Random Forest (RF) implementation. Moreover, Gdaphen provides the efficacy of each classifier and several visualization options to fully understand and support the results as easily readable plots ready to be included in publications. We demonstrate Gdaphen capabilities on several datasets and provide easily followable vignettes. CONCLUSIONS: Gdaphen makes the analysis of phenotypic data much easier for medical or preclinical behavioral researchers, providing an integrated framework to perform: (1) pre-processing steps as data imputation or anonymization; (2) a full statistical assessment to identify which variables are the most important discriminators; and (3) state of the art visualizations ready for publication to support the conclusions of the analyses. Gdaphen is open-source and freely available at https://github.com/munizmom/gdaphen , together with vignettes, documentation for the functions and examples to guide you in each own implementation.


Assuntos
Algoritmo Florestas Aleatórias , Animais , Genótipo , Modelos Lineares
3.
J Neuroinflammation ; 19(1): 7, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991641

RESUMO

BACKGROUND: Inflammatory visceral pain is endogenously controlled by enkephalins locally released by mucosal CD4+ T lymphocytes in mice. The present study aimed at identifying opioid receptor(s) expressed on nociceptive sensory nerves involved in this peripheral opioid-mediated analgesia. METHODS: The peripheral analgesia associated with the accumulation of CD4+ T lymphocytes within the inflamed colonic mucosa was assessed in conditional knockout mice specifically deleted for either of the two opioid receptors for enkephalins (i.e., µ (MOR) and δ (DOR) receptors) in Nav1.8-expressing sensory neurons in the dextran sulfate sodium (DSS)-induced colitis model. RESULTS: Endogenous analgesia is lost in conditional knockout mice for DOR, but not MOR at the later phase of the DSS-induced colitis. The absence of either of the opioid receptors on sensory nerves had no impact on both the colitis severity and the rate of T lymphocytes infiltrating the inflamed colonic mucosa. CONCLUSION: The key role of DOR on primary afferents in relieving intestinal inflammatory pain opens new therapeutic opportunities for peripherally restricted DOR analgesics to avoid most of the side effects associated with MOR-targeting drugs used in intestinal disorders.


Assuntos
Colite/metabolismo , Mucosa Intestinal/metabolismo , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Dor Visceral/metabolismo , Analgesia , Animais , Colite/genética , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Receptores Opioides delta/genética , Dor Visceral/genética
4.
J Neurosci Res ; 100(1): 203-219, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32253777

RESUMO

A major challenge in medicine is developing potent pain therapies without the adverse effects of opiates. Neuroinflammation and in particular microglial activation have been shown to contribute to these effects. However, the implication of the microglial mu opioid receptor (MOR) is not known. We developed a novel conditional knockout (cKO) mouse line, wherein MOR is deleted in microglia. Morphine analgesic tolerance was delayed in both sexes in cKO mice in the hot plate assay. Opioid-induced hyperalgesia (OIH) as measured in the tail immersion assay was abolished in male cKO mice, and physical dependence to morphine as assessed by naloxone-induced withdrawal was attenuated in female cKO mice. Our results show a sex-dependent contribution of microglial MOR in morphine analgesic tolerance, OIH, and physical dependence. In conclusion, our data suggest that blockade of microglial MOR could represent a therapeutic target for opiate analgesia without the opiate adverse effects.


Assuntos
Morfina , Receptores Opioides mu , Analgésicos , Analgésicos Opioides/efeitos adversos , Animais , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Microglia , Morfina/efeitos adversos , Receptores Opioides mu/genética
5.
Proc Natl Acad Sci U S A ; 113(41): 11603-11608, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671662

RESUMO

Connectome genetics seeks to uncover how genetic factors shape brain functional connectivity; however, the causal impact of a single gene's activity on whole-brain networks remains unknown. We tested whether the sole targeted deletion of the mu opioid receptor gene (Oprm1) alters the brain connectome in living mice. Hypothesis-free analysis of combined resting-state fMRI diffusion tractography showed pronounced modifications of functional connectivity with only minor changes in structural pathways. Fine-grained resting-state fMRI mapping, graph theory, and intergroup comparison revealed Oprm1-specific hubs and captured a unique Oprm1 gene-to-network signature. Strongest perturbations occurred in connectional patterns of pain/aversion-related nodes, including the mu receptor-enriched habenula node. Our data demonstrate that the main receptor for morphine predominantly shapes the so-called reward/aversion circuitry, with major influence on negative affect centers.


Assuntos
Encéfalo/fisiologia , Conectoma , Deleção de Genes , Receptores Opioides mu/genética , Recompensa , Animais , Mapeamento Encefálico/métodos , Conectoma/métodos , Imagem de Tensor de Difusão , Genótipo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Modelos Neurológicos , Receptores Opioides mu/metabolismo
6.
Eur J Neurosci ; 48(5): 2231-2246, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30059180

RESUMO

Peripheral delta opioid (DOP) receptors are essential for the antiallodynic effect of the tricyclic antidepressant nortriptyline. However, the population of DOP-expressing cells affected in neuropathic conditions or underlying the antiallodynic activity of antidepressants remains unknown. Using a mouse line in which DOP receptors were selectively ablated in cells expressing Nav1.8 sodium channels (DOP cKO), we established that these DOP peripheral receptors were mandatory for duloxetine to alleviate mechanical allodynia in a neuropathic pain model based on sciatic nerve cuffing. We then examined the impact of nerve cuffing and duloxetine treatment on DOP-positive populations using a knock-in mouse line expressing a fluorescent version of the DOP receptor fused with the enhanced green fluorescent protein (DOPeGFP). Eight weeks postsurgery, we observed a reduced proportion of DOPeGFP-positive small peptidergic sensory neurons (calcitonin gene-related peptide (CGRP) positive) in dorsal root ganglia and a lower density of DOPeGFP-positive free nerve endings in the skin. These changes were not present in nerve-injured mice chronically treated with oral duloxetine. In addition, increased DOPeGFP translocation to the plasma membrane was observed in neuropathic conditions but not in duloxetine-treated neuropathic mice, which may represent an additional level of control of the neuronal activity by DOP receptors. Our results therefore established a parallel between changes in the expression profile of peripheral DOP receptors and mechanical allodynia induced by sciatic nerve cuffing.


Assuntos
Cloridrato de Duloxetina/farmacologia , Neuralgia/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Receptores Opioides delta/efeitos dos fármacos , Animais , Antidepressivos Tricíclicos/farmacologia , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos Transgênicos , Neuralgia/metabolismo , Nortriptilina/farmacologia , Medição da Dor/métodos , Receptores Opioides delta/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo
7.
Brain Behav Immun ; 57: 227-242, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27139929

RESUMO

Opioids are the most powerful analgesics. As pain is driven by sensory transmission and opioid receptors couple to inhibitory G proteins, according to the classical concept, opioids alleviate pain by activating receptors on neurons and blocking the release of excitatory mediators (e.g., substance P). Here we show that analgesia can be mediated by opioid receptors in immune cells. We propose that activation of leukocyte opioid receptors leads to the secretion of opioid peptides Met-enkephalin, ß-endorphin and dynorphin A (1-17), which subsequently act at local neuronal receptors, to relieve pain. In a mouse model of neuropathic pain induced by a chronic constriction injury of the sciatic nerve, exogenous agonists of δ-, µ- and κ-opioid receptors injected at the damaged nerve infiltrated by opioid peptide- and receptor-expressing leukocytes, produced analgesia, as assessed with von Frey filaments. The analgesia was attenuated by pharmacological or genetic inactivation of opioid peptides, and by leukocyte depletion. This decrease in analgesia was restored by the transfer of wild-type, but not opioid receptor-lacking leukocytes. Ex vivo, exogenous opioids triggered secretion of opioid peptides from wild-type immune cells isolated from damaged nerves, which was diminished by blockade of Gαi/o or Gßγ (but not Gαs) proteins, by chelator of intracellular (but not extracellular) Ca(2+), by blockers of phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) receptors, and was partially attenuated by protein kinase C inhibitor. Similarly, the leukocyte depletion-induced decrease in exogenous opioid analgesia was re-established by transfer of immune cells ex vivo pretreated with extracellular Ca(2+) chelator, but was unaltered by leukocytes pretreated with intracellular Ca(2+) chelator or blockers of Gαi/o and Gßγ proteins. Thus, both ex vivo opioid peptide release and in vivo analgesia were mediated by leukocyte opioid receptors coupled to the Gαi/o-Gßγ protein-PLC-IP3 receptors-intracellular Ca(2+) pathway. Our findings suggest that opioid receptors in immune cells are important targets for the control of pathological pain.


Assuntos
Analgesia , Cálcio/metabolismo , Leucócitos/metabolismo , Neuralgia/metabolismo , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Camundongos , Neuralgia/tratamento farmacológico , Receptores Opioides/agonistas , Método Simples-Cego
8.
J Pharmacol Exp Ther ; 342(3): 799-807, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22700431

RESUMO

N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5859) and N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5747) are novel δ-opioid agonists that show good oral bioavailability and analgesic and antidepressive effects in the rat and represent potential drugs for chronic pain treatment. Here, we used genetic approaches to investigate molecular mechanisms underlying their analgesic effects in the mouse. We tested analgesic effects of ADL5859 and ADL5747 in mice by using mechanical sensitivity measures in both complete Freund's adjuvant and sciatic nerve ligation pain models. We examined their analgesic effects in δ-opioid receptor constitutive knockout (KO) mice and mice with a conditional deletion of δ-receptor in peripheral voltage-gated sodium channel (Nav)1.8-expressing neurons (cKO mice). Both ADL5859 and ADL5747, and the prototypical δ agonist 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethyl-piperazin-1-yl]-(3-methoxyphenyl)methyl]-N,N-diethyl-benzamide (SNC80) as a control, significantly reduced inflammatory and neuropathic pain. The antiallodynic effects of all three δ-opioid agonists were abolished in constitutive δ-receptor KO mice and strongly diminished in δ-receptor cKO mice. We also measured two other well described effects of δ agonists, increase in locomotor activity and agonist-induced receptor internalization by using knock-in mice expressing enhanced green fluorescence protein-tagged δ receptors. In contrast to SNC80, ADL5859 and ADL5747 did not induce either hyperlocomotion or receptor internalization in vivo. In conclusion, both ADL5859 and ADL5747 showed efficient pain-reducing properties in the two models of chronic pain. Their effects were mediated by δ-opioid receptors, with a main contribution of receptors expressed on peripheral Nav1.8-positive neurons. The lack of in vivo receptor internalization and locomotor activation, typically induced by SNC80, suggests agonist-biased activity at the receptor for the two drugs.


Assuntos
Benzamidas/farmacologia , Benzopiranos/farmacologia , Locomoção/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Receptores Opioides delta/metabolismo , Compostos de Espiro/farmacologia , Analgesia/métodos , Analgésicos Opioides/agonistas , Animais , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Locomoção/genética , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Medição da Dor/métodos , Piperazinas/farmacologia , Receptores Opioides delta/genética
9.
Front Mol Neurosci ; 15: 913990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769334

RESUMO

The voltage-gated sodium channel Nav1.7 is encoded by SCN9A gene and plays a critical role in pain sensitivity. Several SCN9A gain-of-function (GOF) mutations have been found in patients with small fiber neuropathy (SFN) having chronic pain, including the R185H mutation. However, for most of these variants, their involvement in pain phenotype still needs to be experimentally elucidated. In order to delineate the impact of R185H mutation on pain sensitivity, we have established the Scn9a R185H mutant mouse model using the CRISPR/Cas9 technology. The Scn9a R185H mutant mice show no cellular alteration in the dorsal root ganglia (DRG) containing cell bodies of sensory neurons and no alteration of growth or global health state. Heterozygous and homozygous animals of both sexes were investigated for pain sensitivity. The mutant mice were more sensitive than the wild-type mice in the tail flick and hot plate tests, acetone, and von Frey tests for sensitivity to heat, cold, and touch, respectively, although with sexual dimorphic effects. The newly developed bioinformatic pipeline, Gdaphen is based on general linear model (GLM) and random forest (RF) classifiers as well as a multifactor analysis of mixed data and shows the qualitative and quantitative variables contributing the most to the pain phenotype. Using Gdaphen, tail flick, Hargreaves, hot plate, acetone, cold plate, and von Frey tests, sex and genotype were found to be contributing most to the pain phenotype. Importantly, the mutant animals displayed spontaneous pain as assessed in the conditioned place preference (CPP) assay. Altogether, our results indicate that Scn9a R185H mice show a pain phenotype, suggesting that the SCN9A R185H mutation identified in patients with SFN having chronic pain contributes to their symptoms. Therefore, we provide genetic evidence for the fact that this mutation in Nav1.7 channel plays an important role in nociception and in the pain experienced by patients with SFN who have this mutation. These findings should aid in exploring further pain treatments based on the Nav1.7 channel.

10.
Behav Pharmacol ; 22(5-6): 405-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21836459

RESUMO

Delta opioid receptors represent a promising target for the development of novel analgesics. A number of tools have been developed recently that have significantly improved our knowledge of δ receptor function in pain control. These include several novel δ agonists with potent analgesic properties, and genetic mouse models with targeted mutations in the δ opioid receptor gene. Also, recent findings have further documented the regulation of δ receptor function at cellular level, which impacts on the pain-reducing activity of the receptor. These regulatory mechanisms occur at transcriptional and post-translational levels, along agonist-induced receptor activation, signaling and trafficking, or in interaction with other receptors and neuromodulatory systems. All these tools for in-vivo research, and proposed mechanisms at molecular level, have tremendously increased our understanding of δ receptor physiology, and contribute to designing innovative strategies for the treatment of chronic pain and other diseases such as mood disorders.


Assuntos
Analgésicos Opioides/uso terapêutico , Dor/tratamento farmacológico , Receptores Opioides delta/agonistas , Analgésicos Opioides/farmacologia , Animais , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Humanos , Camundongos , Mutação , Dor/fisiopatologia , Processamento de Proteína Pós-Traducional , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Transcrição Gênica
11.
Neurosci Lett ; 753: 135844, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33775738

RESUMO

The two voltage gated sodium channels Nav1.7 and Nav1.8 are expressed in the peripheral nervous system and involved in various pain conditions including inflammatory and neuropathic pain. Rodent models bearing deletions or mutations of the corresponding genes, Scn9a and Scn10a, were created in order to understand the role of these channels in the pathophysiological mechanism underlying pain symptoms. This review summarizes the pain behavior profiles reported in Scn9a and Scn10a rodent models. The complete loss-of-function or knockout (KO) of Scn9a or Scn10a and the conditional KO (cKO) of Scn9a in specific cell populations were shown to decrease sensitivity to various pain stimuli. The Possum mutant mice bearing a dominant hypermorphic mutation in Scn10a revealed higher sensitivity to noxious stimuli. Several gain-of-function mutations were identified in patients with painful small fiber neuropathy. Future knowledge obtained from preclinical models bearing these mutations will allow understanding how these mutations affect pain. In addition, the review gives perspectives for creating models that better mimic patients' pain symptoms in view to developing novel analgesic strategies.


Assuntos
Analgésicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Dor/genética , Neuropatia de Pequenas Fibras/complicações , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Mutação com Ganho de Função , Humanos , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Nociceptividade/efeitos dos fármacos , Dor/tratamento farmacológico , Ratos , Ratos Transgênicos , Neuropatia de Pequenas Fibras/tratamento farmacológico , Neuropatia de Pequenas Fibras/genética , Agonistas do Canal de Sódio Disparado por Voltagem/farmacologia , Agonistas do Canal de Sódio Disparado por Voltagem/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
12.
Nat Commun ; 12(1): 426, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462216

RESUMO

Painful neuropathy is a frequent complication in diabetes. Proopiomelanocortin (POMC) is an endogenous opioid precursor peptide, which plays a protective role against pain. Here, we report dysfunctional POMC-mediated antinociception in sensory neurons in diabetes. In streptozotocin-induced diabetic mice the Pomc promoter is repressed due to increased binding of NF-kB p50 subunit, leading to a loss in basal POMC level in peripheral nerves. Decreased POMC levels are also observed in peripheral nervous system tissue from diabetic patients. The antinociceptive pathway mediated by POMC is further impaired due to lysosomal degradation of µ-opioid receptor (MOR). Importantly, the neuropathic phenotype of the diabetic mice is rescued upon viral overexpression of POMC and MOR in the sensory ganglia. This study identifies an antinociceptive mechanism in the sensory ganglia that paves a way for a potential therapy for diabetic neuropathic pain.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/patologia , Nociceptividade/fisiologia , Pró-Opiomelanocortina/deficiência , Células Receptoras Sensoriais/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Neuropatias Diabéticas/etiologia , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/patologia , Humanos , Lisossomos , Masculino , Camundongos , Camundongos Knockout , Pró-Opiomelanocortina/genética , Proteólise , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Estreptozocina/toxicidade
13.
Front Cell Neurosci ; 15: 745178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602984

RESUMO

Background: The delta opioid receptor (DOR) contributes to pain control, and a major challenge is the identification of DOR populations that control pain, analgesia, and tolerance. Astrocytes are known as important cells in the pathophysiology of chronic pain, and many studies report an increased prevalence of pain in women. However, the implication of astrocytic DOR in neuropathic pain and analgesia, as well as the influence of sex in this receptor activity, remains unknown. Experimental Approach: We developed a novel conditional knockout (cKO) mouse line wherein DOR is deleted in astrocytes (named GFAP-DOR-KO), and investigated neuropathic mechanical allodynia as well as analgesia and analgesic tolerance in mutant male and female mice. Neuropathic cold allodynia was also characterized in mice of both sexes lacking DOR either in astrocytes or constitutively. Results: Neuropathic mechanical allodynia was similar in GFAP-DOR-KO and floxed DOR control mice, and the DOR agonist SNC80 produced analgesia in mutant mice of both sexes. Interestingly, analgesic tolerance developed in cKO males and was abolished in cKO females. Cold neuropathic allodynia was reduced in mice with decreased DOR in astrocytes. By contrast, cold allodynia was exacerbated in full DOR KO females. Conclusions: These findings show that astrocytic DOR has a prominent role in promoting cold allodynia and analgesic tolerance in females, while overall DOR activity was protective. Altogether this suggests that endogenous- and exogenous-mediated DOR activity in astrocytes worsens neuropathic allodynia while DOR activity in other cells attenuates this form of pain. In conclusion, our results show a sex-specific implication of astrocytic DOR in neuropathic pain and analgesic tolerance. These findings open new avenues for developing tailored DOR-mediated analgesic strategies.

14.
Front Pharmacol ; 12: 780132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925037

RESUMO

The voltage-gated sodium channel NAV1.8 is expressed in primary nociceptive neurons and is involved in pain transmission. Mutations in the SCN10A gene (encoding NAV1.8 channel) have been identified in patients with idiopathic painful small fiber neuropathy (SFN) including the SCN10AG1662S gain-of-function mutation. However, the role of this mutation in pain sensation remains unknown. We have generated the first mouse model for the G1662S mutation by using homologous recombination in embryonic stem cells. The corresponding Scn10aG1663S mouse line has been analyzed for Scn10a expression, intraepidermal nerve fiber density (IENFD), and nociception using behavioral tests for thermal and mechanical sensitivity. The Scn10aG1663S mutants had a similar Scn10a expression level in dorsal root ganglia (DRG) to their wild-type littermates and showed normal IENFD in hindpaw skin. Mutant mice were more sensitive to touch than wild types in the von Frey test. In addition, sexual dimorphism was observed for several pain tests, pointing to the relevance of performing the phenotypical assessment in both sexes. Female homozygous mutants tended to be more sensitive to cooling stimuli in the acetone test. For heat sensitivity, male homozygous mutants showed shorter latencies to radiant heat in the Hargreaves test while homozygous females had longer latencies in the tail flick test. In addition, mutant males displayed a shorter reaction latency on the 54°C hot plate. Collectively, Scn10aG1663S mutant mice show a moderate but consistent increased sensitivity in behavioral tests of nociception. This altered nociception found in Scn10aG1663S mice demonstrates that the corresponding G1662 mutation of SCN10A found in SFN patients with pain contributes to their pain symptoms.

15.
Reg Anesth Pain Med ; 45(11): 907-916, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32928995

RESUMO

BACKGROUND AND OBJECTIVE: The role of peripheral mu-opioid receptors (MOPs) in chronic pain conditions is not well understood. Here, we used a combination of mouse genetics, behavioral assays, and pharmacologic interventions to investigate the contribution of primary afferent MOPs to nociceptive, inflammatory, and neuropathic pain, as well as to opioid analgesia. METHODS: We generated conditional knockout mice in which MOPs were selectively deleted in primary sensory neurons. Inflammatory and neuropathic pain states were induced in mutant and control wild-type mice and their behavioral responses to noxious stimuli were compared. Gross motor function was also evaluated. Immunohistochemistry was used to assess MOP expression in the dorsal root ganglia, periaqueductal gray, and small intestine. The effects of MOP agonists DALDA (dermorphin [D-Arg2, Lys4] (1-4) amide) and morphine were evaluated in pain behavior assays, and their effects on neuronal physiology in the dorsal root ganglia were evaluated in whole-cell patch-clamp recordings. RESULTS: Conditional MOP knockouts and control mice exhibited similar behavioral responses to acute nociceptive stimuli and developed similar inflammation-induced hypersensitivity. Unilateral nerve injury in animals lacking peripheral MOPs induced enhanced, bilateral mechanical allodynia. Subcutaneously administered DALDA was unable to decrease the hypersensitivity induced by inflammation and nerve injury in MOP knockout animals, and morphine's antinociceptive effects were significantly attenuated in the absence of peripheral MOPs. CONCLUSION: MOPs in primary sensory neurons contribute to the modulation of neuropathic pain behavior and opioid analgesia. Our observations highlight the clinical potential of peripherally acting opioid agonists in the management of inflammatory and neuropathic pain.


Assuntos
Neuralgia , Receptores Opioides mu , Analgésicos Opioides/toxicidade , Animais , Camundongos , Morfina/toxicidade , Nociceptividade , Receptores Opioides mu/genética , Células Receptoras Sensoriais
16.
Br J Pharmacol ; 177(5): 1187-1205, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31655493

RESUMO

BACKGROUND AND PURPOSE: Mu and delta opioid receptors(MOP, DOP) contribution to the manifestations of pathological pain is not understood. We used genetic approaches to investigate the opioid mechanisms modulating neuropathic pain and its comorbid manifestations. EXPERIMENTAL APPROACH: We generated conditional knockout mice with MOP or DOP deletion in sensoryNav1.8-positive neurons (Nav1.8), in GABAergic forebrain neurons (DLX5/6) orconstitutively (CMV). Mutant mice and wild-type littermates were subjected topartial sciatic nerve ligation (PSNL) or sham surgery and their nociception wascompared. Anxiety-, depressivelike behaviour and cognitive performance were also measured. Opioid receptor mRNA expression, microgliosis and astrocytosis were assessed in the dorsalroot ganglia (DRG) and/or the spinal cord (SC). KEY RESULTS: Constitutive CMV-MOP knockouts after PSNL displayed reduced mechanical allodynia and enhanced heat hyperalgesia. This phenotype was accompanied by increased DOP expression in DRG and SC, and reduced microgliosis and astrocytosis in deep dorsal horn laminae. Conditional MOP knockouts and control mice developed similar hypersensitivity after PSNL, except for anenhanced heat hyperalgesia by DLX5/6-MOP male mice. Neuropathic pain-induced anxiety was aggravated in CMV-MOP and DLX5/6-MOP knockouts. Nerve-injured CMV-DOP mice showed increased mechanical allodynia, whereas Nav1.8-DOP and DLX5/8-DOP mice had partial nociceptive enhancement. CMV-DOP and DLX5/6-DOP mutants showed increased depressive-like behaviour after PSNL. CONCLUSIONS AND IMPLICATIONS: MOP activity after nerve injury increased anxiety-like responses involving forebrain GABAergic neurons and enhanced mechanical pain sensitivity along with repression of DOP expression and spinal cord gliosis. In contrast, DOP shows a protective function limiting nociceptive and affective manifestations of neuropathic pain.


Assuntos
Nociceptividade , Receptores Opioides delta , Animais , Hiperalgesia , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Receptores Opioides , Receptores Opioides delta/genética , Receptores Opioides mu/genética
17.
Biomed Pharmacother ; 132: 110794, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33035833

RESUMO

Corneal pain is considered to be a core symptom of ocular surface disruption and inflammation. The management of this debilitating condition is still a therapeutic challenge. Recent evidence supports a role of the opioid system in the management of corneal nociception. However, the functional involvement of the mu opioid receptor (MOR) underlying this analgesic effect is not known. We first investigated the expression of the MOR in corneal nerve fibers and trigeminal ganglion (TG) neurons in control mice and a mouse model of corneal inflammatory pain. We then evaluated the anti-nociceptive and electrophysiological effects of DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol] enkephalin), a MOR-selective ligand. MOR immunoreactivity was detected in corneal nerve fibers and primary afferent neurons of the ophthalmic branch of the TG of naive mice. MOR expression was significantly higher in both structures under conditions of inflammatory corneal pain. Topical ocular administration of DAMGO strongly reduced both the mechanical (von Frey) and chemical (capsaicin) corneal hypersensitivity associated with inflammatory ocular pain. Repeated instillations of DAMGO also markedly reversed the elevated spontaneous activity of the ciliary nerve and responsiveness of corneal polymodal nociceptors that were observed in mice with corneal pain. Finally, these DAMGO-induced behavioral and electrophysiological responses were totally blunted by the topical application of naloxone methiodide, an opioid receptor antagonist. Overall, these results provide evidence that topical pharmacological MOR activation may constitute a therapeutic target for the treatment of corneal pain and improve corneal nerve function to alleviate chronic pain.


Assuntos
Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Dor Ocular/tratamento farmacológico , Receptores Opioides mu/agonistas , Administração Oftálmica , Analgésicos Opioides/administração & dosagem , Animais , Córnea/efeitos dos fármacos , Córnea/inervação , Córnea/patologia , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/patologia , Modelos Animais de Doenças , Ala(2)-MePhe(4)-Gly(5)-Encefalina/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32859725

RESUMO

µ-Opioid receptors (MORs) are densely expressed in different brain regions known to mediate reward. One such region is the striatum where MORs are densely expressed, yet the role of these MOR populations in modulating reward is relatively unknown. We have begun to address this question by using a series of genetically engineered mice based on the Cre recombinase/loxP system to selectively delete MORs from specific neurons enriched in the striatum: dopamine 1 (D1) receptors, D2 receptors, adenosine 2a (A2a) receptors, and choline acetyltransferase (ChAT). We first determined the effects of each deletion on opioid-induced locomotion, a striatal and dopamine-dependent behavior. We show that MOR deletion from D1 neurons reduced opioid (morphine and oxycodone)-induced hyperlocomotion, whereas deleting MORs from A2a neurons resulted in enhanced opioid-induced locomotion, and deleting MORs from D2 or ChAT neurons had no effect. We also present the effect of each deletion on opioid intravenous self-administration. We first assessed the acquisition of this behavior using remifentanil as the reinforcing opioid and found no effect of genotype. Mice were then transitioned to oxycodone as the reinforcer and maintained here for 9 d. Again, no genotype effect was found. However, when mice underwent 3 d of extinction training, during which the drug was not delivered, but all cues remained as during the maintenance phase, drug-seeking behavior was enhanced when MORs were deleted from A2a or ChAT neurons. These findings show that these selective MOR populations play specific roles in reward-associated behaviors.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Analgésicos Opioides/farmacologia , Animais , Camundongos , Morfina , Neurônios , Receptores Opioides mu/genética , Recompensa
19.
Exp Dermatol ; 18(5): 424-30, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19382313

RESUMO

The common ectodermal origin of the skin and nervous systems can be expected to predict likely interactions in the adult. Over the last couple of decades much progress has been made to elucidate the nature of these interactions, which provide multidirectional controls between the centrally located brain and the peripherally located skin and immune system. The opioid system is an excellent example of such an interaction and there is growing evidence that opioid receptors (OR) and their endogenous opioid agonists are functional in different skin structures, including peripheral nerve fibres, keratinocytes, melanocytes, hair follicles and immune cells. Greater knowledge of these skin-associated opioid interactions will be important for the treatment of chronic and acute pain and pruritus. Topical treatment of the skin with opioid ligands is particularly attractive as they are active with few side effects, especially if they cannot cross the blood-brain barrier. Moreover, cutaneous activation of the opioid system (e.g. by peripheral nerves, cutaneous and immune cells, especially in inflamed and damaged skin) can influence cell differentiation and apoptosis, and thus may be important for the repair of damaged skin. While many of the pieces of this intriguing puzzle remain to be found, we attempt in this review to weave a thread around available data to discuss how the peripheral opioid system may impact on different key players in skin physiology and pathology.


Assuntos
Analgésicos Opioides/metabolismo , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Sistema Imunitário , Ligantes , Melanócitos/metabolismo , Camundongos , Prurido/metabolismo , RNA Mensageiro/metabolismo , Receptores Opioides/imunologia , Receptores Opioides/fisiologia , Pele/embriologia
20.
Front Mol Neurosci ; 12: 324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116538

RESUMO

Neuropathic pain is a challenging condition for which current therapies often remain unsatisfactory. Chronic administration of ß2 adrenergic agonists, including formoterol currently used to treat asthma and chronic obstructive pulmonary disease, alleviates mechanical allodynia in the sciatic nerve cuff model of neuropathic pain. The limited clinical data currently available also suggest that formoterol would be a suitable candidate for drug repurposing. The antiallodynic action of ß2 adrenergic agonists is known to require activation of the delta-opioid (DOP) receptor but better knowledge of the molecular mechanisms involved is necessary. Using a mouse line in which DOP receptors were selectively ablated in neurons expressing Nav1.8 sodium channels (DOP cKO), we showed that these DOP peripheral receptors were necessary for the antiallodynic action of the ß2 adrenergic agonist formoterol in the cuff model. Using a knock-in mouse line expressing a fluorescent version of the DOP receptor fused with the enhanced green fluorescent protein (DOPeGFP), we established in a previous study, that mechanical allodynia is associated with a smaller percentage of DOPeGFP positive small peptidergic sensory neurons in dorsal root ganglia (DRG), with a reduced density of DOPeGFP positive free nerve endings in the skin and with increased DOPeGFP expression at the cell surface. Here, we showed that the density of DOPeGFP positive free nerve endings in the skin is partially restored and no increase in DOPeGFP translocation to the plasma membrane is observed in mice in which mechanical pain is alleviated upon chronic oral administration of formoterol. This study, therefore, extends our previous results by confirming that changes in the mechanical threshold are associated with changes in peripheral DOP profile. It also highlights the common impact on DOP receptors between serotonin noradrenaline reuptake inhibitors such as duloxetine and the ß2 mimetic formoterol.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa