Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(28): 19257-19267, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29989139

RESUMO

The ionic and electronic conductivity of orthorhombic LaMnO3 can be modified by introducing lower valence dopants at both the La and Mn sites. Alkaline earth doped perovskites, such as LaMnO3, have a variety of applications in catalysis, for nitrogen storage and reduction, and oxidation of volatile organic compounds, and as the oxygen electrode in solid oxide fuel cells. Here, we investigate doping with the divalent alkaline earth metals Mg, Ca, Sr and Ba, and the charge compensation mechanism. The energies of formation of isolated defects and clustered pairs were investigated at both La and Mn sites to establish the most probable site at which they will be introduced. The charge compensation mechanism for the introduction of alkaline earth dopants was examined by considering both ionic (formation of an oxygen vacancy for every two alkaline earth dopants introduced) and electronic compensation (a hole localised at the Mn site for each dopant introduced). Larger cations (Ca, Sr and Ba) were found to have lower defect formation energies when introduced at the La site, while the smaller Mg defect had lower formation energies when introduced to the Mn site. For all defects introduced, electronic compensation for the defect was found to be more energetically favourable, which will result in improved electronic conductivity of the material.

2.
Phys Chem Chem Phys ; 19(36): 24636-24646, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28856363

RESUMO

LaMnO3-based perovskites, which have been extensively studied as cathodes for high temperature solid oxide fuel cells (SOFCs), are also of interest for intermediate temperature SOFCs (T = 600-1000 K). Oxygen vacancy formation is required in LaMnO3 for oxygen diffusion, therefore a low vacancy formation energy is preferable. The stability of the low index surfaces of orthorhombic LaMnO3 has been investigated, with the {010} surface found to be the most stable. Surface stability was found to be affected by the La and Mn coordination, and the Mn-O bonds cleaved on surface formation. The crystal morphology has been predicted, in order to determine the most likely terminations to be present. The formation of oxygen vacancies in bulk LaMnO3 and at all of its low index surfaces has been examined, and it has been found that formation of vacancies in the bulk has a high energy, while there is a large variation in formation energies at the low index surfaces, which is likely to lead to segregation of vacancies to the surface of orthorhombic LaMnO3.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa