Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204341

RESUMO

Regular physical activity in cyclic sports can influence the so-called "angiogenic switch", which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the "angiogenic switch" problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the "angiogenic switch" is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the "angiogenic switch" as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance.


Assuntos
Atletas , Neovascularização Fisiológica , Esportes/fisiologia , Biomarcadores , Suscetibilidade a Doenças , Exercício Físico , Regulação da Expressão Gênica , Hemodinâmica , Humanos , Modelos Biológicos , Especificidade de Órgãos/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33921984

RESUMO

Chronic pain syndromes are an important medical problem generated by various molecular, genetic, and pathophysiologic mechanisms. Back pain, neuropathic pain, and posttraumatic pain are the most important pathological processes associated with chronic pain in adults. Standard approaches to the treatment of them do not solve the problem of pain chronicity. This is the reason for the search for new personalized strategies for the prevention and treatment of chronic pain. The nitric oxide (NO) system can play one of the key roles in the development of peripheral pain and its chronicity. The purpose of the study is to review publications devoted to changes in the NO system in patients with peripheral chronical pain syndromes. We have carried out a search for the articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier, and Google Scholar databases. The search was carried out using keywords and their combinations. The role of NO and NO synthases (NOS) isoforms in peripheral pain development and chronicity was demonstrated primarily from animal models to humans. The most studied is the neuronal NOS (nNOS). The role of inducible NOS (iNOS) and endothelial NOS (eNOS) is still under investigation. Associative genetic studies have shown that single nucleotide variants (SNVs) of NOS1, NOS2, and NOS3 genes encoding nNOS, iNOS, and eNOS may be associated with acute and chronic peripheral pain. Prospects for the use of NOS inhibitors to modulate the effect of drugs used to treat peripheral pain syndrome are discussed. Associative genetic studies of SNVs NOS1, NOS2, and NOS3 genes are important for understanding genetic predictors of peripheral pain chronicity and development of new personalized pharmacotherapy strategies.


Assuntos
Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Manejo da Dor , Dor/metabolismo , Medicina de Precisão , Animais , Terapia Combinada , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Dor/etiologia , Polimorfismo de Nucleotídeo Único , Medicina de Precisão/métodos
3.
Brain Sci ; 11(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200123

RESUMO

Migraine (M) and arterial hypertension (AH) are very common diseases. Today, there are a number of studies confirming and explaining their comorbidity. We searched PubMed, Springer, Scopus, Web of Science, Clinicalkeys, and Google Scholar databases for full-text English publications over the past 15 years using keywords and their combinations. The present review provides a synthesis of information about single nucleotide variants (SNVs) of NOS1, NOS2, and NOS3 genes involved in the development of M and essential AH. The results of studies we have discussed in this review are contradictory, which might be due to different designs of the studies, small sample sizes in some of them, as well as different social and geographical environments. Despite a high prevalence of the M and AH phenotype, its genetic markers have not yet been sufficiently studied. Specifically, there are separate molecular genetic studies aimed to identify SNVs of NOS1, NOS2, and NOS3 genes responsible for the development of M and those responsible for the development of AH. However, these SNVs have not been studied in patients with the phenotype of M and AH. In this review, we identify the SNVs that would be the most interesting to study in this aspect. Understanding the role of environmental factors and genetic predictors will contribute to a better diagnostics and exploration of new approaches to pathogenetic and disease-modifying treatment of the M and AH phenotype.

4.
Nutrients ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836059

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable chronic progressive neurodegenerative disease with the progressive degeneration of motor neurons in the motor cortex and lower motor neurons in the spinal cord and the brain stem. The etiology and pathogenesis of ALS are being actively studied, but there is still no single concept. The study of ALS risk factors can help to understand the mechanism of this disease development and, possibly, slow down the rate of its progression in patients and also reduce the risk of its development in people with a predisposition toward familial ALS. The interest of researchers and clinicians in the protective role of nutrients in the development of ALS has been increasing in recent years. However, the role of some of them is not well-understood or disputed. The objective of this review is to analyze studies on the role of nutrients as environmental factors affecting the risk of developing ALS and the rate of motor neuron degeneration progression. METHODS: We searched the PubMed, Springer, Clinical keys, Google Scholar, and E-Library databases for publications using keywords and their combinations. We analyzed all the available studies published in 2010-2020. DISCUSSION: We analyzed 39 studies, including randomized clinical trials, clinical cases, and meta-analyses, involving ALS patients and studies on animal models of ALS. This review demonstrated that the following vitamins are the most significant protectors of ALS development: vitamin B12, vitamin E > vitamin C > vitamin B1, vitamin B9 > vitamin D > vitamin B2, vitamin B6 > vitamin A, and vitamin B7. In addition, this review indicates that the role of foods with a high content of cholesterol, polyunsaturated fatty acids, urates, and purines plays a big part in ALS development. CONCLUSION: The inclusion of vitamins and a ketogenic diet in disease-modifying ALS therapy can reduce the progression rate of motor neuron degeneration and slow the rate of disease progression, but the approach to nutrient selection must be personalized. The roles of vitamins C, D, and B7 as ALS protectors need further study.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Neurônios Motores/fisiologia , Nutrientes/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Esclerose Lateral Amiotrófica/etiologia , Animais , Dieta/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Humanos , Nutrientes/deficiência , Fatores de Risco
5.
Genet Test Mol Biomarkers ; 19(6): 288-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25871451

RESUMO

AIM: The aim of this study was to investigate the predictive value of the rs1805124 polymorphism of the SCN5A gene with regard to idiopathic cardiac conduction disorders. RESULTS: The AG genotype frequency was significantly higher in patients with an atrioventricular block (61,2%±6,0%) compared with healthy control subjects (34,8%±2,3%), p<0.0001. The AG genotype frequencies among patients with only idiopathic complete right bundle-branch block (CRBBB) (54,2%±5,5%) and those with both CLBBB and LAH (50%±5,1) were significantly higher than in the control group (34,8%±2,3%), p<0.005. CONCLUSIONS: The AG genotype of the H558R (rs1805124) polymorphism of the SCN5A gene is a genetic predictor of idiopathic disorders of atrioventricular and intraventricular conduction.


Assuntos
Arritmias Cardíacas/genética , Sistema de Condução Cardíaco/anormalidades , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Síndrome de Brugada , Bloqueio de Ramo/genética , Doença do Sistema de Condução Cardíaco , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa