RESUMO
Mercury (Hg) researchers have made progress in understanding atmospheric Hg, especially with respect to oxidized Hg (HgII) that can represent 2 to 20% of Hg in the atmosphere. Knowledge developed over the past â¼10 years has pointed to existing challenges with current methods for measuring atmospheric Hg concentrations and the chemical composition of HgII compounds. Because of these challenges, atmospheric Hg experts met to discuss limitations of current methods and paths to overcome them considering ongoing research. Major conclusions included that current methods to measure gaseous oxidized and particulate-bound Hg have limitations, and new methods need to be developed to make these measurements more accurate. Developing analytical methods for measurement of HgII chemistry is challenging. While the ultimate goal is the development of ultrasensitive methods for online detection of HgII directly from ambient air, in the meantime, new surfaces are needed on which HgII can be quantitatively collected and from which it can be reversibly desorbed to determine HgII chemistry. Discussion and identification of current limitations, described here, provide a basis for paths forward. Since the atmosphere is the means by which Hg is globally distributed, accurately calibrated measurements are critical to understanding the Hg biogeochemical cycle.
Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental , Mercúrio , Mercúrio/análise , Atmosfera/química , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análiseRESUMO
Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, â¼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions.
Assuntos
Amônia/análise , Poluentes Ambientais/análise , Nitratos/análise , Ácido Nítrico/análise , Óxidos de Nitrogênio/análise , Nitrogênio/análise , Agricultura/tendências , Amônia/química , Atmosfera/química , Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais/química , Humanos , Nitratos/química , Ácido Nítrico/química , Nitrogênio/química , Óxidos de Nitrogênio/química , Oxirredução , Estados Unidos , Emissões de Veículos/análiseRESUMO
Mercury is a global pollutant released into the biosphere by varied human activities including coal combustion, mining, artisanal gold mining, cement production, and chemical production. Once released to air, land and water, the addition of carbon atoms to mercury by bacteria results in the production of methylmercury, the toxic form that bioaccumulates in aquatic and terrestrial food chains resulting in elevated exposure to humans and wildlife. Global recognition of the mercury contamination problem has resulted in the Minamata Convention on Mercury, which came into force in 2017. The treaty aims to protect human health and the environment from human-generated releases of mercury curtailing its movement and transformations in the biosphere. Coincident with the treaty's coming into force, the 13th International Conference of Mercury as a Global Pollutant (ICMGP-13) was held in Providence, Rhode Island USA. At ICMGP-13, cutting edge research was summarized and presented to address questions relating to global and regional sources and cycling of mercury, how that mercury is methylated, the effects of mercury exposure on humans and wildlife, and the science needed for successful implementation of the Minamata Convention. Human activities have the potential to enhance mercury methylation by remobilizing previously released mercury, and increasing methylation efficiency. This synthesis concluded that many of the most important factors influencing the fate and effects of mercury and its more toxic form, methylmercury, stem from environmental changes that are much broader in scope than mercury releases alone. Alterations of mercury cycling, methylmercury bioavailability and trophic transfer due to climate and land use changes remain critical uncertainties in effective implementation of the Minamata Convention. In the face of these uncertainties, important policy and management actions are needed over the short-term to support the control of mercury releases to land, water and air. These include adequate monitoring and communication on risk from exposure to various forms of inorganic mercury as well as methylmercury from fish and rice consumption. Successful management of global and local mercury pollution will require integration of mercury research and policy in a changing world.
Assuntos
Poluentes Ambientais , Mercúrio , Compostos de Metilmercúrio , Animais , Poluição Ambiental , Humanos , Rhode IslandRESUMO
Dry deposition of atmospheric mercury (Hg) to various land covers surrounding 24 sites in North America was estimated for the years 2009 to 2014. Depending on location, multiyear mean annual Hg dry deposition was estimated to range from 5.1 to 23.8 µg m-2 yr-1 to forested canopies, 2.6 to 20.8 µg m-2 yr-1 to nonforest vegetated canopies, 2.4 to 11.2 µg m-2 yr-1 to urban and built up land covers, and 1.0 to 3.2 µg m-2 yr-1 to water surfaces. In the rural or remote environment in North America, annual Hg dry deposition to vegetated surfaces is dominated by leaf uptake of gaseous elemental mercury (GEM), contrary to what was commonly assumed in earlier studies which frequently omitted GEM dry deposition as an important process. Dry deposition exceeded wet deposition by a large margin in all of the seasons except in the summer at the majority of the sites. GEM dry deposition over vegetated surfaces will not decrease at the same pace, and sometimes may even increase with decreasing anthropogenic emissions, suggesting that Hg emission reductions should be a long-term policy sustained by global cooperation.
Assuntos
Poluentes Atmosféricos , Mercúrio , Monitoramento Ambiental , Florestas , Estações do AnoRESUMO
We present a case study comparing metrics of methylmercury (MeHg) contamination for four undeveloped lakes in Voyageurs National Park to wet atmospheric deposition of mercury (Hg), sulfate (SO4(-2)), and hydrogen ion (H+) in northern Minnesota. Annual wet Hg, SO4(-2), and H+ deposition rates at two nearby precipitation monitoring sites indicate considerable decreases from 1998 to 2012 (mean decreases of 32, 48, and 66%, respectively). Consistent with decreases in the atmospheric pollutants, epilimnetic aqueous methylmercury (MeHgaq) and mercury in small yellow perch (Hgfish) decreased in two of four lakes (mean decreases of 46.5% and 34.5%, respectively, between 2001 and 2012). Counter to decreases in the atmospheric pollutants, MeHgaq increased by 85% in a third lake, whereas Hgfish increased by 80%. The fourth lake had two disturbances in its watershed during the study period (forest fire; changes in shoreline inundation due to beaver activity); this lake lacked overall trends in MeHgaq and Hgfish. The diverging responses among the study lakes exemplify the complexity of ecosystem responses to decreased loads of atmospheric pollutants.
Assuntos
Lagos/análise , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Animais , Ecossistema , Lagos/química , Minnesota , Percas/metabolismoRESUMO
Mercury (Hg) is a toxic metal that is found in aquatic food webs and is hazardous to human and wildlife health. We examined the relationship between Hg deposition, land coverage by coniferous and deciduous forests, and average Hg concentrations in largemouth bass (Micropterus salmoides)-equivalent fish (LMBE) in 14 ecoregions located within all or part of six states in the South Central U.S. In 11 ecoregions, the average Hg concentrations in 35.6-cm total length LMBE were above 300 ng/g, the threshold concentration of Hg recommended by the U.S. Environmental Protection Agency for the issuance of fish consumption advisories. Percent land coverage by coniferous forests within ecoregions had a significant linear relationship with average Hg concentrations in LMBE while percent land coverage by deciduous forests did not. Eighty percent of the variance in average Hg concentrations in LMBE between ecoregions could be accounted for by estimated Hg deposition after adjusting for the effects of coniferous forests. Here we show for the first time that fish from ecoregions with high atmospheric Hg pollution and coniferous forest coverage pose a significant hazard to human health. Our study suggests that models that use Hg deposition to predict Hg concentrations in fish could be improved by including the effects of coniferous forests on Hg deposition.
Assuntos
Monitoramento Ambiental , Poluição Ambiental/análise , Peixes/metabolismo , Mercúrio/análise , Traqueófitas/química , Árvores/química , Animais , Geografia , Humanos , Estados UnidosRESUMO
Documenting long-term trends in mercury deposition and/or accumulation is important in setting regulatory benchmarks, modeling contaminant transfer and flux, measuring success of environmental controls, and even assigning responsibility for pollution. We conducted a study to compare mercury concentrations in small fishes from "high-mercury" and "low-mercury" regions of Illinois, as well as to examine historic patterns of mercury availability using preserved fishes. Mercury concentrations were greater in four species of small fishes collected from a stream in a "high-mercury" region than in those same taxa collected from a stream in a "low-mercury" area in Illinois. Mercury concentrations in blackstripe topminnows (Fundulus notatus) declined dramatically between 1900 and 1961/2006 in the "high-mercury" stream, presumably due reductions in mercury releases from local and regional sources. Preserved fish had an apparent increase in mercury concentrations for up to 12 months, which is consistent with changes in mass and loss of proteins observed in other studies, and we recommend that recent samples be preserved for at least 12 months before comparison with older fluid-preserved material. Based on our results, further studies of mercury in small fishes in Illinois streams appear warranted.
Assuntos
Monitoramento Ambiental , Peixes/metabolismo , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/estatística & dados numéricos , Animais , IllinoisRESUMO
Using the infrastructure of the National Atmospheric Deposition Program (NADP), numerous measurements of radionuclide wet deposition over North America were made for 167 NADP sites before and after the Fukushima Dai-ichi Nuclear Power Station incident of March 12, 2011. For the period from March 8 through April 5, 2011, wet-only precipitation samples were collected by NADP and analyzed for fission-product isotopes within whole-water and filterable solid samples by the United States Geological Survey using gamma spectrometry. Variable amounts of (131)I, (134)Cs, or (137)Cs were measured at approximately 21% of sampled NADP sites distributed widely across the contiguous United States and Alaska. Calculated 1- to 2-week individual radionuclide deposition fluxes ranged from 0.47 to 5100 Becquerels per square meter during the sampling period. Wet deposition activity was small compared to measured activity already present in U.S. soil. NADP networks responded to this complex disaster, and provided scientifically valid measurements that are comparable and complementary to other networks in North America and Europe.
Assuntos
Césio/análise , Fissão Nuclear , Liberação Nociva de Radioativos , Poluentes Radioativos da Água/análise , Atmosfera/química , Radioisótopos de Césio/análise , Filtração/instrumentação , Geografia , Japão , América do Norte , ÁguaRESUMO
The need for ambient gaseous ammonia (NH(3)) measurements has increased in the last decade as reactive NH(3) concentrations and deposition fluxes show little change even with tightening standards on nitrogen oxides (NO(x)) emissions. Currently, there are several networks developing methods for adding NH(3) measurements in the U.S. Gaseous NH(3) measurements will provide scientists and policymakers data which can be used to estimate ecosystem inputs, validate air quality models including trends and regional variability, and evaluate changes to the environment based on additional emission reduction requirements and estimates of critical nitrogen load exceedances. The passive samplers described in this paper were deployed in duplicate or triplicate and collocated with annular denuders or continuous instruments to determine their accuracy. The samplers assessed included the Adapted Low-Cost Passive High Absorption (ALPHA), Radiello(®), and Ogawa passive samplers. The median relative percent differences (MRPD) between the reference method and passive samplers for the ALPHA, Radiello(®) and Ogawa were -2.4%, -37% and -44%, respectively. The precision between duplicate samplers for the ALPHA and Ogawa samplers, was 7% and 6%, respectively. Triplicate Radiello(®) precision was assessed using the coefficient of variation (CV). The CV for the Radiello(®) samplers was 10%. This article discusses the statistical results from these studies.
Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Amônia/análise , Monitoramento Ambiental/métodos , Calibragem , Monitoramento Ambiental/instrumentação , Limite de Detecção , Modelos Lineares , Modelos Químicos , Reprodutibilidade dos Testes , Estados UnidosRESUMO
A national dataset on concentrations of mercury in fish, compiled mainly from state and federal monitoring programs, was used to evaluate trends in mercury (Hg) in fish from US rivers and lakes. Trends were analyzed on data aggregated by site and by state, using samples of the same fish species and tissue type, and using fish of similar lengths. Site-based trends were evaluated from 1969 to 2005, but focused on a subset of the data from 1969 to 1987. Data aggregated by state were used to evaluate trends in fish Hg concentrations from 1988 to 2005. In addition, the most recent Hg fish data (1996-2005) were compared to wet Hg deposition data from the Mercury Deposition Network (MDN) over the same period. Downward trends in Hg concentrations in fish from data collected during 1969-1987 exceeded upward trends by a ratio of 6 to 1. Declining Hg accumulation rates in sediment and peat cores reported by many studies during the 1970s and 1980s correspond with the period when the most downward trends in fish Hg concentrations occurred. Downward Hg trends in both sediment cores and fish were also consistent with the implementation of stricter regulatory controls of direct releases of Hg to the atmosphere and surface waters during the same period. The southeastern USA had more upward Hg trends in fish than other regions for both site and state aggregated data. Upward Hg trends in fish from the southeastern USA were associated with increases in wet deposition in the region and may be attributed to a greater influence of global atmospheric Hg emissions in the southeastern USA. No significant trends were found in 62% of the fish species from six states from 1996 to 2005. A lack of Hg trends in fish in the more recent data was consistent with the lack of trends in wet Hg deposition at MDN sites and with relatively constant global emissions during the same time period. Although few significant trends were observed in the more recent Hg concentrations in fish, it is anticipated that Hg concentrations in fish will respond to changes in atmospheric Hg deposition, however, the magnitude and timing of the response is uncertain.
Assuntos
Peixes/metabolismo , Mercúrio/análise , Mercúrio/metabolismo , Rios/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Monitoramento Ambiental/métodos , Água Doce/química , Estados UnidosRESUMO
In this study, the potential sources, scavenging processes, and emission regions for Hg in wet deposition were investigated in rural (Jeju), suburban (Gwangju), and urban sites (Incheon and Seoul) of South Korea. The annual volume-weighted mean concentrations of Hg in wet deposition were four to five times higher in Incheon (16.6 ng L-1) and Seoul (22.5 ng L-1) than in Jeju (4.0 ng L-1) and Gwangju (4.1 ng L-1). The variations in the Hg concentrations in wet deposition of Jeju and Gwangju were related to Cl-, Na+, Mg2+, and K+ originating from marine and crustal sources, and those in Incheon and Seoul were related to SO42-, NO3-, and NH4+ emitted from anthropogenic sources. The below-cloud scavenging was considered a major inclusion process of Hg in Jeju and Gwangju, while the within-cloud scavenging was suggested in Incheon and Seoul, based on the results of correlation analysis with Hg and major ions in wet deposition, and meteorological data. The cluster analysis of backward trajectories demonstrated that the Hg concentration in wet deposition was highest in the cluster transported from Hebei and Shandong of China in Gwangju, but in Seoul, the Hg concentrations of each cluster were comparable. This suggests that regional transport is the major source of Hg in the wet deposition of Gwangju while local transport provides substantial amount of Hg in the wet deposition of Seoul. This was further supported by the results of concentration-weighted trajectories: the most probable source region was east China for Gwangju, and the mid-west of South Korea and east China for Seoul. It is noted that the peak methylmercury concentrations were found every spring with simultaneous increases in atmospheric Al, Ca, Mg, and Fe concentrations, indicating a concurrence with Asian dust. The formation process of methylmercury in Asian dust should be confirmed in future studies.
RESUMO
Audience: The primary audience for this simulation exercise is emergency medicine (EM) residents, although it could be more broadly applied to all provider groups, including medical students, advanced practice providers, and faculty physicians. Introduction: Over the course of their professional careers, approximately 10-15% of physicians will misuse or abuse alcohol or drugs.1 Unfortunately, Emergency Physicians (EPs) are not immune to this phenomenon, and although EPs make up only 4.7% of the active physician workforce,2 they are over-represented in samples of physicians referred to physician health programs (PHPs) for substance use disorder.3 Despite this increased prevalence, when EPs were referred to a PHP by themselves, family, or colleagues, 84% of them completed the program and were practicing medicine 5 years later,3 which makes recognition and referral of the impaired physician an important step to provide the treatment needed for recovery and ultimately for return to practice. Given the prevalence of substance use disorder in EPs, it is not surprising that the 2019 Accreditation Council for Graduate Medical Education (ACGME) Common Program Requirements in Emergency Medicine stipulate that "residents and faculty members must demonstrate an understanding of their personal role in the recognition of impairment, including from illness, fatigue, and substance use, in themselves, their peers, and other members of the health care team."4 Furthermore, the common program requirements also outline that each residency program must have "designated individuals responsible for reporting impaired providers in accordance with each institution's policies as well as being knowledgeable in the resources available to said provider."4 Despite these requirements, there are no best practices available to outline how residency programs can effectively teach trainees how to recognize and report the impairment. This simulation scenario is intended to provide an opportunity for learners to recognize an impaired colleague in a clinical setting, remove them from the clinical care environment, and notify the appropriate contacts, such as a Program Director, Department Chair, or nursing supervisor. To our knowledge, this is the first described simulation scenario where learners develop competency in recognizing and reporting the impaired provider. Objectives: By the end of this simulation, learners will be able to: 1) Identify potential impairment in the form of alcohol intoxication in a physician colleague; 2) demonstrate the ability to communicate effectively with the colleague and remove them from the patient care environment; 3) discuss the appropriate next steps in identifying long-term wellness resources for the impaired colleague; and 4) demonstrate understanding of the need to continue to provide care for the patients by moving the case forward. Educational Methods: This scenario is a simulated encounter taking place in the emergency department (ED) where the patient is a trauma activation who is not critically ill; the learner's confederate colleague in the scenario arrives for sign-out smelling of alcohol and appearing intoxicated. The learner will need to both provide care for the injured patient while addressing their colleague's impairment and safely removing them from the patient care area. Research Methods: The effectiveness of this simulated scenario as a teaching instrument was evaluated utilizing an internally developed evaluation survey that is part of the standard simulation curriculum at West Virginia University (WVU). The survey consisted of questions both regarding the effectiveness of the instructors as well as of the simulation, rated on a Likert scale. Learners were given the opportunity to answer free response questions where they were asked to reflect upon their experience, including the strengths of the experience and any identified opportunities for improvement. Results: Using a standard Likert scale, learners completing the impaired provider simulation scenario reviewed the effectiveness of the simulation and instructors very positively, with the vast majority of learners scoring all aspects of the scenario either as a 4 or 5. The free response answers were universally positive with many participants considering the experience very useful for training on a topic that is not frequently taught in other portions of the formal didactic curriculum. Discussion: While it is fortunately rare to encounter a colleague who is acutely intoxicated by alcohol or drugs and to simultaneously be responsible for providing patient care, it is important that learners are provided with formal instruction on how to recognize impairment and navigate the potentially difficult conversation with the impaired provider to ensure patient safety. This simulated scenario provides a realistic curricular instrument that could be implemented in any EM training program. Topics: Substance abuse; impaired provider; impaired provider reporting policies; professionalism; patient safety; provider safety.
RESUMO
The Asia Pacific Mercury Monitoring Network (APMMN) cooperatively measures mercury in precipitation in a network of sites operating in Asia and the Western Pacific region. The network addresses significant data gaps in a region where mercury emission estimates are the highest globally, and available measurement data are limited. The reduction of mercury emissions under the Minamata Convention on Mercury also justifies the need for continent-wide and consistent observations that can help determine the magnitude of the problem and assess the efficacy of reductions over time. The APMMN's primary objectives are to monitor wet deposition and atmospheric concentrations of mercury and assist partners in developing their own monitoring capabilities. Network planning began in 2012 with wet deposition sampling starting in 2014. Currently, eight network sites measure mercury in precipitation following standardized procedures adapted from the National Atmospheric Deposition Program. The network also has a common regional analytical laboratory (Taiwan), and quality assurance and data flagging procedures, which ensure the network makes scientifically valid and consistent measurements. Results from our ongoing analytical and field quality assurance measurements show minimal contamination in the network and accurate analytical analyses. We are continuing to monitor a potential concentration and precipitation volume bias under certain conditions. The average mercury concentration in precipitation was 11.3 (+9.6) ng L-1 for 139 network samples in 2018. Concentrations for individual sites vary widely. Low averages compare to the low concentrations observed on the U.S. West Coast; while other sites have average concentrations similar to the high values reported from many urban areas in China. Future APMMN goals are to (1) foster new network partnerships, (2) continue to collect, quality assure, and distribute results on the APMMN website, (3) provide training and share best monitoring practices, and (4) establish a gaseous concentration network for estimating dry deposition.
RESUMO
Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 µg per square meter per year (µg/m2/yr) and ranged from 2.2 to 23.4 µg/m2/yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Florestas , Mercúrio/análise , Modelos Químicos , Compostos de Metilmercúrio , Árvores , Estados UnidosRESUMO
This study examined the spatial and temporal trends of mercury (Hg) in wet deposition and air concentrations in the United States (U.S.) and Canada between 1997 and 2013. Data were obtained from the National Atmospheric Deposition Program (NADP) and Environment Canada monitoring networks, and other sources. Of the 19 sites with data records from 1997-2013, 53% had significant negative trends in Hg concentration in wet deposition, while no sites had significant positive trends, which is in general agreement with earlier studies that considered NADP data up until about 2010. However, for the time period 2007-2013 (71 sites), 17% and 13% of the sites had significant positive and negative trends, respectively, and for the time period 2008-2013 (81 sites) 30% and 6% of the sites had significant positive and negative trends, respectively. Non-significant positive tendencies were also widespread. Regional trend analyses revealed significant positive trends in Hg concentration in the Rocky Mountains, Plains, and Upper Midwest regions for the recent time periods in addition to significant positive trends in Hg deposition for the continent as a whole. Sulfate concentration trends in wet deposition were negative in all regions, suggesting a lower importance of local Hg sources. The trend in gaseous elemental Hg from short-term datasets merged as one continuous record was broadly consistent with trends in Hg concentration in wet deposition, with the early time period (1998-2007) producing a significantly negative trend (-1.5±0.2%year(-1)) and the recent time period (2008-2013) displaying a flat slope (-0.3±0.1%year(-1), not significant). The observed shift to more positive or less negative trends in Hg wet deposition primarily seen in the Central-Western regions is consistent with the effects of rising Hg emissions from regions outside the U.S. and Canada and the influence of long-range transport in the free troposphere.
Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Poluição do Ar/estatística & dados numéricos , Canadá , Monitoramento Ambiental , Estados UnidosRESUMO
We provide a longer-term record of Hg wet deposition at two tropical latitude monitoring sites in Mexico, selected to provide regionally representative data. Weekly wet deposition samples were collected over 2 years, from September 2003 to November 2005. Based on this data set, we discuss the magnitude and seasonal variation of Hg in wet deposition and compare the results to other measurement sites and to several model estimates. With precipitation-weighted mean (PWM) concentrations of 8.2 and 7.9 ng L(-1), respectively, during the sampling period from Sep 30 2003 to Oct 11 2005, and median weekly concentrations of 9.4 ± 1 ng L(-1) for both sites, the wet Hg concentrations and deposition at HD01 were much lower than those observed at the US Gulf Coast MDN sites while the wet Hg deposition at OA02 was much lower than most MDN sites, but somewhat similar to US MDN sites along the Pacific Coast. Based on the limited available data, we conclude that the approximately 30 % higher average precipitation at HD01 and roughly equal PWM concentrations lead to the higher deposition at HD01 versus OA02. We believe that these observations may offer scientists and modelers additional understanding of the depositional fluxes in the lower latitudes of North America.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Poluição Ambiental/estatística & dados numéricos , México , Modelos Químicos , América do Norte , Estações do AnoRESUMO
The Laurentian Great Lakes region of North America contains substantial aquatic resources and mercury-contaminated landscapes, fish, and wildlife. This special issue emanated from a bi-national synthesis of data from monitoring programs and case studies of mercury in the region, here defined as including the Great Lakes, the eight U.S. states bordering the Great Lakes, the province of Ontario, and Lake Champlain. We provide a retrospective overview of the regional mercury problem and summarize new findings from the synthesis papers and case studies that follow. Papers in this issue examine the chronology of mercury accumulation in lakes, the importance of wet and dry atmospheric deposition and evasion to regional mercury budgets, the influence of land-water linkages on mercury contamination of surface waters, the bioaccumulation of methylmercury in aquatic foods webs; and ecological and health risks associated with methylmercury in a regionally important prey fish.
Assuntos
Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Atmosfera/química , Monitoramento Ambiental , Cadeia Alimentar , Sedimentos Geológicos/química , Great Lakes Region , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/estatística & dados numéricosRESUMO
Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002-2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002-2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation.