Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(26): 14053-14062, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30652173

RESUMO

Propynal (HCCCHO) is a complex organic compound (COM) of astrochemical and astrobiological interest. We present a combined theoretical and experimental investigation on the single photon ionization of gas-phase propynal, in the 10 to 15.75 eV energy range. Fragmentation pathways of the resulting cation were investigated both theoretically and experimentally. The adiabatic ionization energy (AIE) has been measured to be AIEexp = 10.715 ± 0.005 eV using tunable VUV synchrotron radiation coupled with a double imaging photoelectron photoion coincidence (i2PEPICO) spectrometer. In the energy range under study, three fragments formed by dissociative photoionization were identified experimentally: HC3O+, HCO+ and C2H2+, and their respective appearance energies (AE) were found to be AE = 11.26 ± 0.03, 13.4 ± 0.3 and 11.15 ± 0.03 eV, respectively. Using explicitly correlated coupled cluster calculations and after inclusion of the zero point vibrational energy, core-valence and scalar relativistic effects, the AIE is calculated to be AIEcalc = 10.717 eV, in excellent agreement with the experimental finding. The appearance energies of the fragments were calculated using a similar methodological approach. To further interpret the observed vibrational structure, anharmonic frequencies were calculated for the fundamental electronic state of the propynal cation. Moreover, MRCI calculations were carried out to understand the population of excited states of the cationic species. This combined experimental and theoretical study will help to understand the presence and chemical evolution of propynal in the external parts of interstellar clouds where it has been observed.

2.
J Chem Phys ; 140(17): 174305, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811639

RESUMO

Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11-15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC3N involves new aspects and new assignments of the vibrational components to excitation of the A(2)Σ(+) and B(2)Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B(2)Π state of HC3N(+). A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C(2)Σ(+) state of HC3N(+) at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6-15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C-H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised.


Assuntos
Acetileno/análogos & derivados , Transferência de Energia , Nitrilas/metabolismo , Teoria Quântica , Acetileno/química , Acetileno/metabolismo , Elétrons , Íons/química , Nitrilas/química , Fenômenos Físicos , Síncrotrons
3.
J Chem Phys ; 139(18): 184304, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24320271

RESUMO

Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8-25 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and detailed spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of dicyanoacetylene was measured as 11.80 ± 0.01 eV. A detailed analysis of the cation spectroscopy involves new aspects and new assignments of the vibrational components to excitation of the quasi-degenerate A(2)Πg, B(2)Σg(+) states as well as the C(2)Σu(+) and D(2)Πu states of the cation. Some of the structured autoionization features observed in the 12.4-15 eV region of the total ion yield spectrum were assigned to vibrational components of valence shell transitions and to two previously unknown Rydberg series converging to the D(2)Πu state of C4N2(+). The appearance energies of the fragment ions C4N(+), C3N(+), C4(+), C2N(+), and C2(+) were measured and their heats of formation were determined and compared with existing literature values. Thermochemical calculations of the appearance potentials of these and other weaker ions were used to infer aspects of dissociative ionization pathways.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa