Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(5): 2356-2368, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37094251

RESUMO

In the last years, the exponential growth in the demand of petroleum-based plastic materials, besides the extreme exploitation of nonrenewable resources, lead to the mismanagement of their disposal and to serious ecological issues related to their dispersion in the environment. Among the possible practical solutions, the design of biobased and biodegradable polymers represents one of the most innovative challenges. In such a context, the eco-design of an aromatic-aliphatic multiblock copolymer based on poly(lactic acid) and containing 2,5-furandicarboxylic acid was carried out with the aim of improving the properties of poly(l-lactic acid) for sustainable packaging applications. The synthetic method followed a novel top-down approach, starting from industrial high-molecular-weight poly(l-lactic acid) (PLLA), which was reacted with 1,5-pentanediol to get hydroxyl-terminated PLLA and then chain-extended with hydroxyl-terminated poly(pentamethylene furanoate) (PPeF-OH). The final copolymer, called P(LLA50PeF50)-CE, was subjected to molecular, structural, and thermal characterization. Tensile and gas permeability tests were also carried out. According to the results obtained, PLLA thermal stability was improved, being the range of processing temperatures widened, and its stiffness and brittleness were decreased, making the new material suitable for the realization of films for flexible packaging. The oxygen permeability of PLLA was decreased by 40% and a similar improvement was measured also for carbon dioxide. P(LLA50PeF50)-CE was found to be completely biodegraded within 60 days of composting treatment. In terms of mechanism, the blocks of PPeF and PLLA were demonstrated to undergo surface erosion and bulk hydrolysis, respectively. In terms of kinetics, PPeF blocks degraded slower than PLLA ones.


Assuntos
Compostagem , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Cinética , Poliésteres/química , Polímeros/química
2.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241804

RESUMO

High molecular weight, fully biobased random copolymers of 2,5-furandicarboxylic acid (2,5-FDCA) containing different amounts of (1R, 3S)-(+)-Camphoric Acid (CA) have been successfully synthesized by two-stage melt polycondensation and compression molding in the form of films. The synthesized copolyesters have been first subjected to molecular characterization by nuclear magnetic resonance spectroscopy and gel-permeation chromatography. Afterward, the samples have been characterized from a thermal and structural point of view by means of differential scanning calorimetry, thermogravimetric analysis, and wide-angle X-ray scattering, respectively. Mechanical and barrier properties to oxygen and carbon dioxide were also tested. The results obtained revealed that chemical modification permitted a modulation of the abovementioned properties depending on the amount of camphoric co-units present in the copolymers. The outstanding functional properties promoted by camphor moieties addition could be associated with improved interchain interactions (π-π ring stacking and hydrogen bonds).

3.
Faraday Discuss ; 227: 274-290, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300505

RESUMO

Commercial hollow fiber filters for micro- and ultrafiltration are based on size exclusion and do not allow the removal of small molecules such as antibiotics. Here, we demonstrate that a graphene oxide (GO) layer can be firmly immobilized either inside or outside polyethersulfone-polyvinylpyrrolidone hollow fiber (Versatile PES®, hereafter PES) modules and that the resulting core-shell fibers inherits the microfiltration ability of the pristine PES fibers and the adsorption selectivity of GO. GO nanosheets were deposited on the fiber surface by filtration of a GO suspension through a PES cartridge (cut-off 0.1-0.2 µm), then fixed by thermal annealing at 80 °C, rendering the GO coating stably fixed and unsoluble. The filtration cut-off, retention selectivity and efficiency of the resulting inner and outer modified hollow fibers (HF-GO) were tested by performing filtration on water and bovine plasma spiked with bovine serum albumin (BSA, 66 kDa, ≈15 nm size), monodisperse polystyrene nanoparticles (52 nm and 303 nm sizes), with two quinolonic antibiotics (ciprofloxacin and ofloxacin) and rhodamine B (RhB). These tests showed that the microfiltration capability of PES was retained by HF-GO, and in addition the GO coating can capture the molecular contaminants while letting through BSA and smaller polystyrene nanoparticles. Combined XRD, molecular modelling and adsorption experiments show that the separation mechanism does not rely only on physical size exclusion, but involves intercalation of solute molecules between the GO layers.

4.
Chem Soc Rev ; 48(9): 2502-2517, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30869083

RESUMO

Polymorphism is a widespread phenomenon occurring in many solid materials having important effects in many scientific disciplines. Since molecular packing can determine the functional properties of materials but is often difficult to control, polymorphism has usually been considered a drawback for technological applications. Thanks to advances in its control over the past few years, polymorphism is now often considered more as an opportunity because it allows a much wider range of functionality in, for example, a solid molecular material, where a corresponding packing type can be selected or even promoted. This tutorial review introduces the reader to the most representative progress in applications of polymorphism as an additional functionality of materials especially in its current promise for technological applications. In addition, it examines the most powerful strategies to control and fully exploit the intrinsic properties of polymorphism and transitions between its various metastable states, through fine-tuning of molecular packing in a reproducible manner. The aim is to create awareness about polymorphism as a novel enabling technology rather than as a problem.

5.
Chemistry ; 25(71): 16301-16310, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31750577

RESUMO

Layered double hydroxides (LDHs) have been widely studied for their plethora of fascinating features and applications. The potentiostatic electrodeposition of LDHs has been extensively applied in the literature as a fast and direct method to substitute classical chemical routes. However, the electrochemical approach does not usually allow for a fine control of the MII /MIII ratio in the synthesized material. By employing a recently proposed potentiodynamic method, LDH films of controlled composition are herein prepared with good reproducibility, using different ratios of the trivalent (Fe or Al) to bivalent (Co) cations in the electrolytic solution. All the obtained materials are shown to be effective oxygen evolution reaction (OER) catalysts, and are thoroughly characterized by a multi-technique approach, including FE-SEM, XRD, Raman, AES and a wide range of electrochemical procedures.

6.
Inorg Chem ; 55(13): 6532-8, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27302276

RESUMO

In this work, we investigate the optical and structural properties of the well-known triplet emitter bis(4',6'-difluorophenylpyridinato)-iridium(III) picolinate (FIrpic), showing that its ability to pack in two different ordered crystal structures promotes attractive photophysical properties that are useful for solid-state lighting applications. This approach allows the detrimental effects of the nonradiative pathways on the luminescence performance in highly concentrated organic active materials to be weakened. The remarkable electro-optical behavior of sky-blue phosphorescent organic light-emitting diodes incorporating crystal domains of FIrpic, dispersed into an appropriate matrix as an active layer, has also been reported as well as the X-ray diffraction, nuclear magnetic resonance, electro-ionization mass spectrometry, and scanning electron microscopy analyses of the crystalline samples. We consider this result as a crucial starting point for further research aimed at the use of a crystal triplet emitter in optoelectronic devices to overcome the long-standing issue of luminescence self-quenching.

7.
J Struct Biol ; 185(1): 99-106, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24157843

RESUMO

The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat.


Assuntos
Lipídeos/fisiologia , Muda/fisiologia , Pele/metabolismo , Pele/fisiopatologia , Serpentes/metabolismo , Serpentes/fisiologia , Água/metabolismo , Animais , Ecossistema , Permeabilidade , Temperatura
8.
Nanoscale ; 16(14): 7123-7133, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38501609

RESUMO

Filters made of graphene oxide (GO) are promising for purification of water and selective sieving of specific ions; while some results indicate the ionic radius as the discriminating factor in the sieving efficiency, the exact mechanism of sieving is still under debate. Furthermore, most of the reported GO filters are planar coatings with a simple geometry and an area much smaller than commercial water filters. Here, we show selective transport of different ions across GO coatings deposited on standard hollow fiber filters with an area >10 times larger than typical filters reported. Thanks to the fabrication procedure, we obtained a uniform coating on such complex geometry with no cracks or holes. Monovalent ions like Na+ and K+ can be transported through these filters by applying a low electric voltage, while divalent ions are blocked. By combining transport and adsorption measurements with molecular dynamics simulations and spectroscopic characterization, we unravel the ion sieving mechanism and demonstrate that it is mainly due to the interactions of the ions with the carboxylate groups present on the GO surface at neutral pH.

9.
Chemistry ; 19(39): 12991-3001, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23913577

RESUMO

A squaraine dye functionalized with a bulky trialkoxy phenyl moiety through a flexible diamide linkage (GA-SQ) capable of undergoing self-assembly has been synthesized and fully characterized. Rapid cooling of a hot solution of GA-SQ to 0 °C results in self-assembled precipitates consisting of two types of nanostructures, rings and ill-defined short fibers. The application of ultrasound modifies the conditions for the supersaturation-mediated nucleation, generating only one kind of nuclei and prompting the formation of crystalline fibrous structures, inducing gelation of solvent molecules. The unique self-assembling behavior of GA-SQ under ultrasound stimulus has been investigated in detail by using absorption, emission, FT-IR, XRD, SEM, AFM and TEM techniques. These studies reveal a nucleation growth mechanism of the self-assembled material, an aspect rarely scrutinized in the area of sonication-induced gelation. Furthermore, in order to probe the effects of nanoscale substrates on the sonication-induced self-assembly, a minuscule amount of single-walled carbon nanotubes was added, which leads to acceleration of the self-assembly through a heterogeneous nucleation process that ultimately affords a supramolecular gel with nanotape-like morphology. This study demonstrates that self-assembly of functional dyes can be judiciously manipulated by an external stimulus and can be further controlled by the addition of carbon nanotubes.

10.
Biomater Adv ; 154: 213583, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604040

RESUMO

Cardiac tissue engineering is a cutting-edge technology aiming to replace irreversibly damaged cardiac tissue and restore contractile functionality. However, cardiac tissue engineering porous and perfusable scaffolds to enable oxygen supply in vitro and eventually promote angiogenesis in vivo are still desirable. Two fully-aliphatic random copolymers of poly(butylene succinate) (PBS), poly(butylene succinate/Pripol), P(BSBPripol), and poly(butylene/neopentyl glycol succinate), P(BSNS), containing two different subunits, neopentyl glycol and Pripol 1009, were successfully synthesized and then electrospun in tridimentional fibrous mats. The copolymers show different thermal and mechanical behaviours as result of their chemical structure. In particular, copolymerization led to a reduction in crystallinity and consequently PBS stiffness, reaching values of elastic modulus very close to those of soft tissues. Then, to check the biological suitability, human induced Pluripotent Stem Cells (hiPSCs) were directly seeded on both PBS-based copolymeric scaffolds. The results confirmed the ability of both the scaffolds to sustain cell viability and to maintain their stemness during cell expansion. Furthermore, gene expression and immunofluorescence analysis showed that P(BSBPripol) scaffold promoted an upregulation of the early cardiac progenitor and later-stage markers with a simultaneously upregulation of HYPPO pathway gene expression, crucial for mechanosensing of cardiac progenitor cells. These results suggest that the correct ad-hoc chemical design and, in turn, the mechanical properties of the matrix, such as substrate stiffness, together with surface porosity, play a critical role in regulating the behaviour of cardiac progenitors, which ultimately offers valuable insights into the development of novel bio-inspired scaffolds for cardiac tissue regeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Diferenciação Celular/genética , Succinatos
11.
Adv Mater ; 35(42): e2302756, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37364565

RESUMO

The assembly of supramolecular structures within living systems is an innovative approach for introducing artificial constructs and developing biomaterials capable of influencing and/or regulating the biological responses of living organisms. By integrating chemical, photophysical, morphological, and structural characterizations, it is shown that the cell-driven assembly of 2,6-diphenyl-3,5-dimethyl-dithieno[3,2-b:2',3'-d]thiophene-4,4-dioxide (DTTO) molecules into fibers results in the formation of a "biologically assisted" polymorphic form, hence the term bio-polymorph. Indeed, X-ray diffraction reveals that cell-grown DTTO fibers present a unique molecular packing leading to specific morphological, optical, and electrical properties. Monitoring the process of fiber formation in cells with time-resolved photoluminescence, it is established that cellular machinery is necessary for fiber production and a non-classical nucleation mechanism for their growth is postulated. These biomaterials may have disruptive applications in the stimulation and sense of living cells, but more crucially, the study of their genesis and properties broadens the understanding of life beyond the native components of cells.


Assuntos
Materiais Biocompatíveis , Difração de Raios X
12.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956691

RESUMO

Fully bio-based poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) blends plasticized with tributyrin (TB), and their nanocomposite based on chitin nanoparticles (ChNPs) was developed using melt mixing followed by a compression molding process. The combination of PHB and ChNPs had an impact on the crystallinity of the plasticized PLA matrix, thus improving its oxygen and carbon dioxide barrier properties as well as displaying a UV light-blocking effect. The addition of 2 wt% of ChNP induced an improvement on the initial thermal degradation temperature and the overall migration behavior of blends, which had been compromised by the presence of TB. All processed materials were fully disintegrated under composting conditions, suggesting their potential application as fully biodegradable packaging materials.

13.
J Am Chem Soc ; 133(22): 8654-61, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21526797

RESUMO

Functional supramolecular architectures for bottom-up organic nano- and microtechnology are a high priority research topic. We discovered a new recognition algorithm, resulting from the combination of thioalkyl substituents and head-to-head regiochemistry of substitution, to induce the spontaneous self-assembly of sulfur overrich octathiophenes into supramolecular crystalline fibers combining high charge mobility and intense fluorescence. The fibers were grown on various types of surfaces either as superhelices or straight rods depending on molecular structure. Helical fibers directly grown on a field effect transistor displayed efficient charge mobility and intrinsic 'memory effect'. Despite the fact that the oligomers did not have chirality centers, one type of hand-helicity was always predominant in helical fibers, due to the interplay of molecular atropisomerism and supramolecular helicity induced by terminal substituents. Finally, we found that the new sulfur overrich oligothiophenes can easily be prepared in high yields through ultrasound and microwave assistance in green conditions.

14.
Chemphyschem ; 12(8): 1558-71, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21370378

RESUMO

Ferdinand Bernauer proposed in his monograph, "Gedrillte" Kristalle (1929), that a great number of simple, crystalline substances grow from solution or from the melt as polycrystalline spherulites with helically twisting radii that give rise to distinct bull's-eye patterns of concentric optical bands between crossed polarizers. The idea that many common molecular crystals can be induced to grow as mesoscale helices is a remarkable proposition poorly grounded in theories of polycrystalline pattern formation. Recent reinvestigation of one of the systems Bernauer described revealed that rhythmic precipitation in the absence of helical twisting accounted for modulated optical properties [Gunn, E. et al. J. Am. Chem. Soc. 2006, 128, 14234-14235]. Herein, the Bernauer hypothesis is re-examined in detail for three substances described in "Gedrillte" Kristalle, potassium dichromate, hippuric acid, and tetraphenyl lead, using contemporary methods of analysis not available to Bernauer, including micro-focus X-ray diffraction, electron microscopy, and Mueller matrix imaging polarimetry. Potassium dichromate is shown to fall in the class of rhythmic precipitates of undistorted crystallites, while hippuric acid spherulites are well described as helical fibrils. Tetraphenyl lead spherulites grow by twisting and rhythmic precipitation. The behavior of tetraphenyl lead is likely typical of many substances in "Gedrillte" Kristalle. Rhythmic precipitation and helical twisting often coexist, complicating optical analyses and presenting Bernauer with difficulties in the characterization and classification of the objects of his interest.

15.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372066

RESUMO

In the present study, 100% bio-based polyesters of 2,5-thiophenedicarboxylic acid were synthesized via two-stage melt polycondensation using glycols containing 3 to 6 methylene groups. The so-prepared samples were characterised from the molecular point of view and processed into free-standing thin films. Afterward, both the purified powders and the films were subjected to structural and thermal characterisation. In the case of thin films, mechanical response and barrier properties to O2 and CO2 were also evaluated. From the results obtained, it emerged that the length of glycolic sub-units is an effective tool to modulate the chain mobility and, in turn, the kind and amount of ordered phases developed in the samples. In addition to the usual amorphous and 3D crystalline phases, in all the samples investigated it was possible to evidence a further phase characterised by a lower degree of order (mesophase) than the crystalline one, whose amount is strictly related to the glycol sub-unit length. The relative fraction of all these phases is responsible for the different mechanical and barrier performances. Last, but not least, a comparison between thiophene-based homopolymers and their furan-based homologues was carried out.

16.
RSC Adv ; 11(41): 25731-25737, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35478875

RESUMO

In this contribution the temperature evolution of the constrained or rigid amorphous fraction (RAF) of biodegradable and biocompatible poly(butylene succinate) (PBS) was quantified, after detailed thermodynamic characterization by differential scanning calorimetry and X-ray diffraction analysis. At the glass transition temperature, around -40 °C, the rigid amorphous fraction in PBS is about 0.25. It decreases with increasing temperature and becomes zero in proximity of 25 °C. Thus, at room temperature and at the human body temperature, all the amorphous fraction is mobile. This information is important for the development of PBS products for various applications, including biomedical applications, since physical properties of the rigid amorphous fraction, for example mechanical and permeability properties, are different from those of the mobile amorphous fraction.

17.
Polymers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34451247

RESUMO

Among the several actions contributing to the development of a sustainable society, there is the eco-design of new plastic materials with zero environmental impact but that are possibly characterized by properties comparable to those of the traditional fossil-based plastics. This action is particularly urgent for food packaging sector, which involves large volumes of plastic products that quickly become waste. This work aims to contribute to the achievement of this important goal, proposing new bio-based cycloaliphatic polymers based on trans-1,4-cyclohexanedicarboxylic acid and containing different amount of camphoric acid (from 0 to 15 mol %), a cheap and bio-based building block. Such chemical modification was conducted in the melt by avoiding the use of solvents. The so-obtained polymers were processed in the form of films by compression molding. Afterwards, the new and successfully synthesized random copolymers were characterized by molecular (NMR spectroscopy and GPC analysis), thermal (DSC and TGA analyses), diffractometric (wide angle X-ray scattering), mechanical (through tensile tests), and O2 and CO2 barrier point of view together with the parent homopolymer. The article aims to relate the results obtained with the amount of camphoric moiety introduced and to present, the different microstructure in the copolymers in more detail; indeed, in these samples, a different crystalline form developed (the so-called ß-PBCE). This latter form was the kinetically favored and less packed one, as proven by the lower equilibrium melting temperature determined for the first time by Baur's equation.

18.
ACS Sustain Chem Eng ; 9(35): 11937-11949, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34513341

RESUMO

High-molecular-weight poly(butylene 2,4-furanoate) (2,4-PBF), an isomer of well-known poly(butylene 2,5-furanoate) (2,5-PBF), was synthesized through an eco-friendly solvent-free polycondensation process and processed in the form of an amorphous film by compression molding. Molecular characterization was carried out by NMR spectroscopy and GPC analysis, confirming the chemical structure and high polymerization degree. Thermal analyses evidenced a reduction of both glass-to-rubber transition and melting temperatures, as well as a detriment of crystallization capability, for 2,4-PBF with respect to 2,5-PBF. Nevertheless, it was possible to induce crystal phase formation by annealing treatment. Wide-angle X-ray scattering revealed that the crystal lattices developed in the two isomers are distinct from each other. The different isomerism affects also the thermal stability, being 2,4-PBF more thermally inert than 2,5-PBF. Functional properties, such as wettability, mechanical response, and gas barrier capability, were tested on both amorphous and semicrystalline 2,4-PBF films and compared with those of 2,5-PBF. Reduced hydrophilicity was determined for 2,4-isomer, in line with its lower average dipole moment, suggesting better chemical resistance to hydrolysis. Stress-strain tests have evidenced the higher flexibility and toughness of 2,4-PBF with respect to those of 2,5-PBF and the possibility of improving its mechanical resistance by annealing. Finally, the different isomerism deeply affects the gas barrier performance, being the O2- and CO2-transmission rates of 2,4-PBF 50 and 110 times lower, respectively, than those of 2,5-PBF. The gas barrier properties turned out to be outstanding under a dry atmosphere as well as in humid conditions, suggesting the presence of interchain hydrogen bonds. The gas blocking capability decreases after annealing because of the presence of disclination associated with the formation of crystals.

19.
Front Chem ; 9: 771612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869219

RESUMO

In the past 20 years, scientific research focused on the identification of valid alternatives to materials of fossil origin, in particular, related to biobased polymers. Recently, the efforts led to the synthesis of thiophene-based polymers (TBPs), a new class of polyesters based on 2,5-thiophenedicarboxylic acid (TPCA) that can be industrially produced using biomass-derived molecules. In this study, TBPs were synthesized using diols with different chain length (from C4 to C6) leading to poly(butylene 2,5-thiophenedicarboxylate) (PBTF), poly(pentamethylene 2,5-thiophenedicarboxylate) (PPeTF), and poly(hexamethylene 2,5-thiophenedicarboxylate) (PHTF), respectively, that were processed to thin films. To investigate enzymatic hydrolysis of these polymer films, cutinase 1 (Thc_cut1) and cutinase 2 (Thc_cut2) from Thermobifida cellulosilytica were recombinantly expressed in the host E. coli and purified. After 72 h of incubation at 65°C with 5 µM Thc_cut1, weight loss and HPLC analysis indicated 9, 100, and 80% degradation of PBTF, PPeTF, and PHTG with a concomitant release of 0.12, 2.70, and 0.67 mM of TPCA. The SEM analysis showed that tiny holes were formed on the surface of the films and after 72 h PPeTF was completely degraded. The LC-TOF/MS analysis indicated that Thc_cut2 in particular released various oligomers from the polymer during the reaction. In addition, the FTIR analysis showed the formation of novel acid and hydroxyl groups on the polymer surfaces. The results showed that the two used thermostable cutinases are promising biocatalysts for the environmentally friendly degradation of TPCA-based polyesters, in view of a possible sustainable recycling of plastic waste through resynthesis processes.

20.
Chem Commun (Camb) ; 57(31): 3765-3768, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33730139

RESUMO

Microwave (MW) accelerated synthesis combined with microfiltration (MF) on commercial hollow fiber modules enables fast and scalable preparation of highly pure modified graphene oxide nanosheets. The MW-MF procedure is demonstrated on polyethylenimine (PEI) modified GO, and the so-obtained GOPEI is used for simultaneous removal of arsenic and lead from water.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa