Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(22): 14867-73, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189266

RESUMO

Herein, we discuss the study of solvation dynamics of lithium-succinonitrile (SN) plastic crystalline electrolytes by ultrafast vibrational spectroscopy. The infrared absorption spectra indicated that the CN stretch of the Li(+) bound and unbound succinonitrile molecules in a same solution have distinct vibrational frequencies (2276 cm(-1)vs. 2253 cm(-1)). The frequency difference allowed us to measure the rotation decay times of solvent molecules bound and unbound to Li(+) ion. The Li(+) coordination number of the Li(+)-SN complex was found to be 2 in the plastic crystal phase (22 °C) and 2.5-3 in the liquid phase (80 °C), which is independent of the concentration (from 0.05 mol kg(-1) to 2 mol kg(-1)). The solvation structures along with DFT calculations of the Li(+)-SN complex have been discussed. In addition, the dissociation percentage of lithium salt was also determined. In 0.5 mol kg(-1) LiBF4-SN solutions at 80 °C, 60% ± 10% of the salt dissociates into Li(+), which is bound by 2 or 3 solvent molecules. In the 0.5 mol kg(-1) LiClO4-SN solutions at 80 °C, the salt dissociation ratio can be up to 90% ± 10%.

2.
Environ Sci Pollut Res Int ; 31(25): 37594-37609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780842

RESUMO

The Bayer red mud (RM) and phosphogypsum (PG) accumulation have caused significant environmental contamination. However, practical and effective resource utilization technologies are still lacking currently. This work aims to develop ferric sulfoaluminate cement (FSAC) employing low-cost materials including Bayer red mud, phosphogypsum, and other materials. This method effectively improves the utilization rate of Bayer red mud and phosphogypsum. Under the premise of ensuring the performance of FSAC, the utilization rate of solid waste can reach up to 48.56%. The effects of different red mud dosages on cement mineral formation, workability, and mechanical properties are investigated. Then, untreated phosphogypsum is adopted as a retarder for FSAC, and the hydration process, working properties, mechanical properties, types of hydration products, and morphology of FSAC are explored. The results suggest that the crystal transformation of Ye'elemite C 4 A 3 S ¯  is promoted with the increase of Bayer red mud content. Cubic crystal system Ye'elemite C 4 A 3 S ¯ - c  with higher hydration activity is generated, which increases the early strength of cement but greatly reduces the setting time, hindering the later strength growth. Untreated phosphogypsum can effectively delay the early hydration process of FSAC, prolong the setting time of cement, and increase the strength of FSAC in the later stage. When the dosage of Bayer red mud and phosphogypsum is 17.64% and 9.21%, respectively, with phosphogypsum dosage of 20%, the prepared FSAC has satisfactory mechanical properties, and the 3-day and 90-day compressive strengths are 34.6 MPa and 57.1 MPa, respectively. In addition, the study of heavy metal leaching indicates that the FSAC prepared by Bayer red mud, phosphogypsum, and other raw materials will generate no environment pollution, and the solidification of heavy metal elements in the cement slurry is superior.


Assuntos
Sulfato de Cálcio , Materiais de Construção , Fósforo , Sulfato de Cálcio/química , Fósforo/química
3.
J Phys Chem B ; 120(12): 3187-95, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26967376

RESUMO

Isotopic effects on the formation and dissociation kinetics of hydrogen bonds are studied in real time with ultrafast chemical exchange spectroscopy. The dissociation time of hydrogen bond between phenol-OH and p-xylene (or mesitylene) is found to be identical to that between phenol-OD and p-xylene (or mesitylene) in the same solvents. The experimental results demonstrate that the isotope substitution (D for H) has negligible effects on the hydrogen bond kinetics. DFT calculations show that the isotope substitution does not significantly change the frequencies of vibrational modes that may be along the hydrogen bond formation and dissociation coordinate. The zero point energy differences of these modes between hydrogen bonds with OH and OD are too small to affect the activation energy of the hydrogen bond dissociation in a detectible way at room temperature.

4.
J Phys Chem B ; 119(30): 9893-904, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26135548

RESUMO

In this work, MD simulations with two different force fields, vibrational energy relaxation and resonant energy transfer experiments, and neutron scattering data are used to investigate ion pairing and clustering in a series of GdmSCN aqueous solutions. The MD simulations reproduce the major features of neutron scattering experimental data very well. Although no information about ion pairing or clustering can be obtained from the neutron scattering data, MD calculations clearly demonstrate that substantial amounts of ion pairs and small ion clusters (subnanometers to a few nanometers) do exist in the solutions of concentrations 0.5 M*, 3 M*, and 5 M* (M* denotes mole of GdmSCN per 55.55 mole of water). Vibrational relaxation experiments suggest that significant amounts of ion pairs form in the solutions. Experiments measuring the resonant energy transfers among the thiocyanate anions in the solutions suggest that the ions form clusters and in the clusters the average anion distance is 5.6 Å (5.4 Å) in the 3 M* (5 M*) Gdm-DSCN/D2O solution.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa