Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 149(4): 1141-1150, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38226552

RESUMO

To address the requirement of ultra-sensitive detection of trace mercury(II) (Hg2+) ions in the environment and food, we developed an electrochemical biosensor with super-sensitivity, extremely high selectivity, and reusability. This biosensor comprised two signal amplification components: a three-dimensional macroporous dealloyed (3DOMD) Au-Ag thin-film electrode and a multifunctional encoded Au@Pt nanocage (APNC). As a platform for immobilized capture DNA (cDNA), a 3DOMD Au-Ag thin film prepared by a dealloying method with an active surface area 4.8 times higher than that of 3D macroporous gold films generated by cyclic voltammetry (CV) with sulfuric acid was capable of increasing the sensing surface area while also strengthening the electron transport capacity of the sensing substrate due to its multilayered multi-porous framework. In the presence of Hg2+, probe DNA (pDNA) could be hybridized with the mismatched capture DNA (cDNA) through stable thymine-Hg2+-thymine (T-Hg2+-T) linkages, connecting thionine-APNC to the electrode surface and utilizing the large specific surface area to accomplish highly sensitive detection of Hg2+. With an extremely low Hg2+ detection limit of 2 pM and a detection range from 0.01 to 1000 nM, this technique opened up a new avenue for the ultrasensitive detection of a wider range of heavy metal ions or biomolecules.

2.
Biosens Bioelectron ; 58: 48-56, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24613969

RESUMO

An ultrasensitive electrochemical aptasensor was successfully fabricated for the detection of adenosine triphosphate (ATP). For the first time, one detection system combined several elements: magnetic aptamer sequences for target recognition and separation, a DNAzyme assisted cyclic signal amplification strategy, layer-by-layer (LBL) quantum dots (QDs) composites for promoting square wave anodic stripping voltammetric (SWASV) analysis and Bi, Nafion (Nf) and three-dimensional ordered macroporous polyaniline-ionic liquid (Bi/Nf/3DOM PANI-IL) film modified glassy carbon electrode (GCE) for monitoring enhanced SWASV signal. The modification of Nf/3DOM PANI-IL on GCE showed that the preconcentration efficiency was improved by the electrostatic absorption of Cd(2+) with negative Nf layer with the enhanced analytical sensitivity due to a large active surface area of 3DOM structure. The increased SWASV peak current values of the label (CdS)4@SiO2 composites were found to be proportional to the logarithmic value of ATP concentrations in the range of 1pM-10nM and 10nM-1µM, with the detection limit as low as 0.5pM. The proposed aptasensor has shown an excellent performance such as high sensitivity, good selectivity and analytical application in real samples. The results demonstrated that the multiple signal amplified strategy we developed was feasible for clinical ATP assay and would provide a promising model for the detection of other small molecules.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , DNA Catalítico/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Aptâmeros de Nucleotídeos/genética , Desenho de Equipamento , Análise de Falha de Equipamento
3.
Anal Chim Acta ; 815: 42-50, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24560371

RESUMO

A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab1) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab2) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core-shell Au-SiO2@Fe3O4 nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab2) through the Au-SH or Au-NH3(+) interaction, and HRP was also used as the block reagent. The formation of antigen-antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL(-1) with a detection limit of 0.01 U mL(-1). Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from the commercialized electrochemiluminescent method.


Assuntos
Antígeno CA-19-9/análise , Técnicas Eletroquímicas , Ouro/química , Peroxidase do Rábano Silvestre/metabolismo , Magnetismo , Nanoestruturas/química , Anticorpos/química , Anticorpos/imunologia , Técnicas Biossensoriais , Antígeno CA-19-9/imunologia , Eletrodos , Ensaio de Imunoadsorção Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Óxido Ferroso-Férrico/química , Peroxidase do Rábano Silvestre/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Porosidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa