Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(5): 969-985.e11, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182479

RESUMO

Poly(ADP-ribose) (PAR) is an RNA-like polymer that regulates an increasing number of biological processes. Dysregulation of PAR is implicated in neurodegenerative diseases characterized by abnormal protein aggregation, including amyotrophic lateral sclerosis (ALS). PAR forms condensates with FUS, an RNA-binding protein linked with ALS, through an unknown mechanism. Here, we demonstrate that a strikingly low concentration of PAR (1 nM) is sufficient to trigger condensation of FUS near its physiological concentration (1 µM), which is three orders of magnitude lower than the concentration at which RNA induces condensation (1 µM). Unlike RNA, which associates with FUS stably, PAR interacts with FUS transiently, triggering FUS to oligomerize into condensates. Moreover, inhibition of a major PAR-synthesizing enzyme, PARP5a, diminishes FUS condensation in cells. Despite their structural similarity, PAR and RNA co-condense with FUS, driven by disparate modes of interaction with FUS. Thus, we uncover a mechanism by which PAR potently seeds FUS condensation.


Assuntos
Esclerose Lateral Amiotrófica , Poli Adenosina Difosfato Ribose , Esclerose Lateral Amiotrófica/genética , Humanos , Poli Adenosina Difosfato Ribose/metabolismo , RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
2.
Structure ; 32(2): 177-187.e5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070499

RESUMO

Fused in sarcoma (FUS) is an archetypal phase separating protein asymmetrically divided into a low complexity domain (LCD) and an RNA binding domain (RBD). Here, we explore how the two domains contribute to RNA-dependent phase separation, RNA recognition, and multivalent complex formation. We find that RBD drives RNA-dependent phase separation but forms large and irregularly shaped droplets that are rescued by LCD in trans. Electrophoretic mobility shift assay (EMSA) and single-molecule fluorescence assays reveal that, while both LCD and RBD bind RNA, RBD drives RNA engagement and multivalent complex formation. While RBD alone exhibits delayed RNA recognition and a less dynamic RNP complex compared to full-length FUS, LCD in trans rescues full-length FUS activity. Likewise, cell-based data show RBD forms nucleolar condensates while LCD in trans rescues the diffuse nucleoplasm localization of full-length FUS. Our results point to a regulatory role of LCD in tuning the RNP interaction and buffering phase separation.


Assuntos
Separação de Fases , Motivos de Ligação ao RNA , Proteína FUS de Ligação a RNA , RNA , RNA/química , Proteína FUS de Ligação a RNA/química , Humanos
3.
Methods Mol Biol ; 2563: 149-160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227472

RESUMO

Many biomolecular condensates, including nucleoli and stress granules, form via dynamic multivalent protein-protein and protein-RNA interactions. These molecular interactions nucleate liquid-liquid phase separation (LLPS) and determine condensate properties, such as size and fluidity. Here, we outline the experimental procedures for single-molecule fluorescence experiments to probe protein-RNA interactions underlying LLPS. The experiments include single-molecule Förster (Fluorescence) resonance energy transfer (smFRET) to monitor protein-induced conformational changes in the RNA, protein-induced fluorescence enhancement (PIFE) to measure protein-RNA encounters, and single-molecule nucleation experiments to quantify the association and buildup of proteins on a nucleating RNA. Together, these experiments provide complementary approaches to elucidate a molecular view of the protein-RNA interactions that drive ribonucleoprotein condensate formation.


Assuntos
Condensados Biomoleculares , RNA , Transferência Ressonante de Energia de Fluorescência/métodos , Nanotecnologia , RNA/metabolismo , Ribonucleoproteínas/metabolismo
4.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36798393

RESUMO

Proteins containing intrinsically disordered regions are integral components of the cellular signaling pathways and common components of biological condensates. Point mutations in the protein sequence, genetic at birth or acquired through aging, can alter the properties of the condensates, marking the onset of neurodegenerative diseases such as ALS and dementia. While all-atom molecular dynamics method can, in principle, elucidate the conformational changes responsible for the aging of the condensate, the applications of this method to protein condensate systems is conditioned by the availability of molecular force fields that can accurately describe both structured and disordered regions of such proteins. Using the special-purpose Anton 2 supercomputer, we benchmarked the efficacy of nine presently available molecular force fields in describing the structure and dynamics of a Fused in sarcoma (FUS) protein. Five-microsecond simulations of the full-length FUS protein characterized the effect of the force field on the global conformation of the protein, self-interactions among its side chains, solvent accessible surface area and the diffusion constant. Using the results of dynamic light scattering as a benchmark for the FUS radius of gyration, we identified several force field that produced FUS conformations within the experimental range. Next, we used these force fields to perform ten-microsecond simulations of two structured RNA binding domains of FUS bound to their respective RNA targets, finding the choice of the force field to affect stability of the RNA-FUS complex. Taken together, our data suggest that a combination of protein and RNA force fields sharing a common four-point water model provides an optimal description of proteins containing both disordered and structured regions and RNA-protein interactions. To make simulations of such systems available beyond the Anton 2 machines, we describe and validate implementation of the best performing force fields in a publicly available molecular dynamics program NAMD. Our NAMD implementation enables simulations of large (tens of millions of atoms) biological condensate systems and makes such simulations accessible to a broader scientific community.

5.
J Chem Theory Comput ; 19(12): 3721-3740, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37134270

RESUMO

Proteins containing intrinsically disordered regions are integral parts of the cellular signaling pathways and common components of biological condensates. Point mutations in the protein sequence, genetic at birth or acquired through aging, can alter the properties of the condensates, marking the onset of neurodegenerative diseases such as ALS and dementia. While the all-atom molecular dynamics method can, in principle, elucidate the conformational changes that arise from point mutations, the applications of this method to protein condensate systems is conditioned upon the availability of molecular force fields that can accurately describe both structured and disordered regions of such proteins. Using the special-purpose Anton 2 supercomputer, we benchmarked the efficacy of nine presently available molecular force fields in describing the structure and dynamics of a Fused in sarcoma (FUS) protein. Five-microsecond simulations of the full-length FUS protein characterized the effect of the force field on the global conformation of the protein, self-interactions among its side chains, solvent accessible surface area, and the diffusion constant. Using the results of dynamic light scattering as a benchmark for the FUS radius of gyration, we identified several force fields that produced FUS conformations within the experimental range. Next, we used these force fields to perform ten-microsecond simulations of two structured RNA binding domains of FUS bound to their respective RNA targets, finding the choice of the force field to affect stability of the RNA-FUS complex. Taken together, our data suggest that a combination of protein and RNA force fields sharing a common four-point water model provides an optimal description of proteins containing both disordered and structured regions and RNA-protein interactions. To make simulations of such systems available beyond the Anton 2 machines, we describe and validate implementation of the best performing force fields in a publicly available molecular dynamics program NAMD. Our NAMD implementation enables simulations of large (tens of millions of atoms) biological condensate systems and makes such simulations accessible to a broader scientific community.


Assuntos
Benchmarking , Simulação de Dinâmica Molecular , Humanos , Recém-Nascido , Proteínas , Conformação Molecular , RNA/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa