Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Reports ; 17(9): 2141-2155, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35985330

RESUMO

Impairment of long-term potentiation (LTP) is a common feature of many pre-clinical models of neurological disorders; however, studies in humans are limited by the inaccessibility of the brain. Human induced pluripotent stem cells (hiPSCs) provide a unique opportunity to study LTP in disease-specific genetic backgrounds. Here we describe a multi-electrode array (MEA)-based assay to investigate chemically induced LTP (cLTP) across entire networks of hiPSC-derived midbrain dopaminergic (DA) and cortical neuronal populations that lasts for days, allowing studies of the late phases of LTP and enabling detection of associated molecular changes. We show that cLTP on midbrain DA neuronal networks is largely independent of the N-methyl-D-aspartate receptor (NMDAR) and partially dependent on brain-derived neurotrophic factor (BDNF). Finally, we describe activity-regulated gene expression induced by cLTP. This cLTP-MEA assay platform will enable phenotype discovery and higher-throughput analyses of synaptic plasticity on hiPSC-derived neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciação de Longa Duração , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato
3.
J Toxicol Environ Health A ; 70(18): 1515-26, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17710612

RESUMO

Manganese (Mn), an essential metal nutrient, produces neurotoxicity in workers exposed chronically to high concentrations of Mn-containing dusts. Our long-term goal was to develop a physiologically based pharmacokinetic (PBPK) model to support health risk assessments for Mn. A PK model that accounts for Mn-tracer kinetics and steady-state tissue Mn in rats on normal diets (about 45 ppm Mn) is described. The focus on normal dietary intakes avoids inclusion of dose-dependent processes that maintain Mn homeostasis at higher dose rates. Data used for model development were obtained from published literature. The model represents six tissues: brain, respiratory tract, liver, kidneys, bone, and muscle. Each of these has a shallow tissue pool in rapid equilibration with blood and a deep tissue store, connected to the shallow pool by transfer rate constants. Intraperitoneal (i.p.) tracer Mn is absorbed into systemic blood and equilibrated with the shallow and deep pools of tissue Mn. The model was calibrated to match steady-state tissue concentrations and radiotracer kinetics following an i.p. dose of 54Mn. Successful simulations showed uptake of 0.8% of dietary Mn, and estimated tissue partition coefficients and transfer rate constants in the tissues. Inhalation tracer 54Mn studies could only be adequately modeled by assuming that deposited Mn was absorbed into deep tissue stores in the lung before becoming available to move via blood to other tissues. In summary, this present effort provides the basic structure of a multiroute PBPK model for Mn that should now be easily extended to include homeostatic control and inhalation exposures in order to support risk assessment calculations for Mn.


Assuntos
Manganês/farmacocinética , Modelos Biológicos , Radioisótopos/farmacocinética , Administração por Inalação , Administração Oral , Animais , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Rim/metabolismo , Cinética , Fígado/metabolismo , Masculino , Traçadores Radioativos , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Sistema Respiratório/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa