Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(2): 351-364, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38093637

RESUMO

Electric double layers are crucial to energy storage and electrocatalytic device performance. While double layer formation originates in electrostatic interactions, electric double layer properties are governed by a balance of both electrostatic and entropic driving forces. Favorable ion-surface electrostatic interactions attract counterions to charged surfaces to compensate, or "screen," potentials, but the confinement of these same ions from a bulk reservoir to the interface incurs an entropic penalty. Here, we use a dicationic imidazolium ionic liquid and its monovalent analogue to explore how cation valence and entropy influence double layer formation and electrochemical reactivity using CO2 electroreduction as a model reaction. We find that divalent and monovalent cations display similar CO2 reduction kinetics but differ vastly in steady-state reactivity due to rapid electrochemically induced precipitation of insulating dicationic (bi)carbonate films. Using in situ surface-enhanced Raman scattering spectroscopy, we find that potential-dependent cation reorientation occurs at similar potentials between the two ionic liquids, but the introduction of a covalent link in the divalent cation imparts a more ordered double layer structure that favors (bi)carbonate precipitation. In mixed monovalent-divalent electrolytes, we find that the divalent cations dominate interfacial properties by preferentially accumulating at surfaces even at very low relative concentrations. Our findings confirm that ion entropy plays a key role in modulating local electrochemical environments. Furthermore, we highlight how double layer properties are sensitive to the properties of counterions that pay the lowest entropic penalty to accumulate at interfaces. Overall, we illustrate that ion entropy provides a new knob to tune reaction microenvironments and unveil how entropy plays a major role in modulating electrochemical reactivity in mixed ion electrolytes.

2.
Proc Natl Acad Sci U S A ; 115(33): 8284-8289, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30068609

RESUMO

Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this work, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. More broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.

3.
Langmuir ; 35(48): 16062-16069, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31610658

RESUMO

Rigid, cage-like molecules, like diamondoids, show unique self-assembly behavior, such as templating 1-D nanomaterial assembly via pathways that are typically blocked for such bulky substituents. We investigate molecular forces between diamondoids to explore why molecules with high structural rigidity exhibit these novel assembly pathways. The rigid nature of diamondoids significantly lowers configurational entropy, and we hypothesize that this influences molecular interaction forces. To test this concept, we calculated the distance-dependent impact of entropy on assembly using molecular dynamics simulations. To isolate pairwise entropic and enthalpic contributions to assembly, we considered pairs of molecules in a thermal bath, fixed at set intermolecular separations but otherwise allowed to freely move. By comparing diamondoids to linear alkanes, we draw out the impact of rigidity on the entropy and enthalpy of pairwise interactions. We find that linear alkanes actually exhibit stronger van der Waals interactions than diamondoids at contact, because the bulky structure of diamondoids induces larger net atomic separations. Yet, we also find that diamondoids pay lower entropic penalties when assembling into contact pairs. Thus, the cage-like shape of diamondoids introduces an enthalpic penalty at contact, but the penalty is counterbalanced by entropic effects. Investigating the distance dependence of entropic forces provides a mechanism to explore how rigidity influences molecular assembly. Our results show that low entropic penalties paid by diamondoids can explain the effectiveness of diamondoids in templating nanomaterial assembly. Hence, tuning molecular rigidity can be an effective strategy for controlling the assembly of functional materials, such as biomimetic surfaces and nanoscale materials.

4.
Proc Natl Acad Sci U S A ; 112(24): 7432-7, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26040001

RESUMO

Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.


Assuntos
Líquidos Iônicos/química , Coloides/química , Técnicas Eletroquímicas/instrumentação , Eletrólitos/química , Eletricidade Estática , Temperatura , Termodinâmica
5.
Biomacromolecules ; 17(1): 88-97, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26619081

RESUMO

Using the surface forces apparatus (SFA), interaction forces between supported lipid bilayers were measured in the presence of polyethylene glycol and two other commercially available pegylated triblock polymers, Pluronic F68 and F127. Pluronic F68 has a smaller central hydrophobic block compared to F127 and therefore is more hydrophilic. The study aimed to unravel the effects of polymer architecture and composition on the interactions between the bilayers. Our keys findings show that below the critical aggregation concentration (CAC) of the polymers, a soft, weakly anchored, polymer layer is formed on the surface of the bilayers. The anchoring strength of this physisorbed layer was found to increase significantly with the size of the hydrophobic block of the polymer, and was strongest for the more hydrophobic polymer, F127. Above the CAC, a dense polymer layer, exhibiting gel-like properties, was found to rapidly grow on the bilayers even after mechanical disruption. The cohesive interaction maintaining the gel layer structure was found to be stronger for F127, and was also found to promote the formation of highly structured aggregates on the bilayers.


Assuntos
Bicamadas Lipídicas/química , Polietilenoglicóis/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Fenômenos Mecânicos , Poloxâmero/química , Polietilenos/química , Polipropilenos/química , Propriedades de Superfície
6.
Proc Natl Acad Sci U S A ; 110(24): 9674-9, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716690

RESUMO

We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force-distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin-Landau-Verwey-Overbeek theory with an additive repulsive steric (entropic) ion-surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high-free-ion density ionic liquids and ionic liquid blends.


Assuntos
Eletrólitos/química , Líquidos Iônicos/química , Soluções/química , Termodinâmica , Algoritmos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Imidazóis/química , Íons/química , Cinética , Modelos Químicos , Eletricidade Estática , Sulfonamidas/química , Propriedades de Superfície
7.
Small ; 11(17): 2058-68, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25504803

RESUMO

Surfactant self-assembly on surfaces is an effective way to tailor the complex forces at and between hydrophobic-water interfaces. Here, the range of structures and forces that are possible at surfactant-adsorbed hydrophobic surfaces are demonstrated: certain long-chain bolaform surfactants-containing a polydimethylsiloxane (PDMS) mid-block domain and two cationic α, ω-quarternary ammonium end-groups-readily adsorb onto thin PDMS films and form dynamically fluctuating nanostructures. Through measurements with the surface forces apparatus (SFA), it is found that these soft protruding nanostructures display polymer-like exploration behavior at the PDMS surface and give rise to a long-ranged, temperature- and rate-dependent attractive bridging force (not due to viscous forces) on approach to a hydrophilic bare mica surface. Coulombic interactions between the cationic surfactant end-groups and negatively-charged mica result in a rate-dependent polymer bridging force during separation as the hydrophobic surfactant mid-blocks are pulled out from the PDMS interface, yielding strong adhesion energies. Thus, (i) the versatile array of surfactant structures that may form at hydrophobic surfaces is highlighted, (ii) the need to consider the interaction dynamics of such self-assembled polymer layers is emphasized, and (iii) it is shown that long-chain surfactants can promote robust adhesion in aqueous solutions.

8.
Langmuir ; 31(29): 8013-21, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26135325

RESUMO

We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three characteristic surfactants: (1) an anionic aliphatic surfactant, sodium dodecyl sulfate (SDS), (2) a cationic aliphatic surfactant, myristyltrimethylammonium bromide (MTAB), and (3) a silicone polyelectrolyte with a long-chain PDMS midblock and multiple cationic end groups. Through surface forces apparatus measurements, we show that the separate addition of three surfactants can result in interaction energies ranging from fully attractive to fully repulsive. Specifically, SDS adsorbs at the PDMS surface as a monolayer and modifies the monotonic electrostatic repulsion to a mica surface. MTAB adsorbs at both the PDMS (as a monolayer) and the mica surface (as a monolayer or bilayer), resulting in concentration-dependent interactions, including a long-range electrostatic repulsion, a short-range steric hydration repulsion, and a short-range hydrophobic attraction. The cationic polyelectrolyte adsorbs as a monolayer on the PDMS and causes a long-range electrostatic attraction to mica, which can be modulated to a monotonic repulsion upon further addition of SDS. Therefore, through judicious selection of surfactants, we show how to modify the magnitude and sign of the interaction energy at different separation distances between hydrophobic and hydrophilic surfaces, which govern the static and kinetic stability of colloidal dispersions. Additionally, we demonstrate how the charge density of silicone polyelectrolytes modifies both their self-assembly at polymer interfaces and the robust adhesion of thin PDMS films to target surfaces.

9.
Langmuir ; 31(7): 2051-64, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25072835

RESUMO

We review direct force measurements on a broad class of hydrophobic and hydrophilic surfaces. These measurements have enabled the development of a general interaction potential per unit area, W(D) = -2γ(i)Hy exp(-D/D(H)) in terms of a nondimensional Hydra parameter, Hy, that applies to both hydrophobic and hydrophilic interactions between extended surfaces. This potential allows one to quantitatively account for additional attractions and repulsions not included in the well-known combination of electrostatic double layer and van der Waals theories, the so-called Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The interaction energy is exponentially decaying with decay length D(H) ≈ 0.3-2 nm for both hydrophobic and hydrophilic interactions, with the exact value of D(H) depending on the precise system and conditions. The pre-exponential factor depends on the interfacial tension, γ(i), of the interacting surfaces and Hy. For Hy > 0, the interaction potential describes interactions between partially hydrophobic surfaces, with the maximum hydrophobic interaction (i.e., two fully hydrophobic surfaces) corresponding to Hy = 1. Hydrophobic interactions between hydrophobic monolayer surfaces measured with the surface forces apparatus (SFA) are shown to be well described by the proposed interaction potential. The potential becomes repulsive for Hy < 0, corresponding to partially hydrophilic (hydrated) interfaces. Hydrated surfaces such as mica, silica, and lipid bilayers are discussed and reviewed in the context of the values of Hy appropriate for each system.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Termodinâmica
10.
Langmuir ; 31(3): 1105-12, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25540823

RESUMO

The 3,4-dihydroxyphenylalanine (Dopa)-containing proteins of marine mussels provide attractive design paradigms for engineering synthetic polymers that can serve as high performance wet adhesives and coatings. Although the role of Dopa in promoting adhesion between mussels and various substrates has been carefully studied, the context by which Dopa mediates a bridging or nonbridging macromolecular adhesion to surfaces is not understood. The distinction is an important one both for a mechanistic appreciation of bioadhesion and for an intelligent translation of bioadhesive concepts to engineered systems. On the basis of mussel foot protein-5 (Mfp-5; length 75 res), we designed three short, simplified peptides (15-17 res) and one relatively long peptide (30 res) into which Dopa was enzymatically incorporated. Peptide adhesion was tested using a surface forces apparatus. Our results show that the short peptides are capable of weak bridging adhesion between two mica surfaces, but this adhesion contrasts with that of full length Mfp-5, in that (1) while still dependent on Dopa, electrostatic contributions are much more prominent, and (2) whereas Dopa surface density remains similar in both, peptide adhesion is an order of magnitude weaker (adhesion energy E(ad) ∼ -0.5 mJ/m(2)) than full length Mfp-5 adhesion. Between two mica surfaces, the magnitude of bridging adhesion was approximately doubled (E(ad) ∼ -1 mJ/m(2)) upon doubling the peptide length. Notably, the short peptides mediate much stronger adhesion (E(ad) ∼ -3.0 mJ/m(2)) between mica and gold surfaces, indicating that a long chain length is less important when different interactions are involved on each of the two surfaces.


Assuntos
Adesivos/química , Materiais Biomiméticos/química , Di-Hidroxifenilalanina/química , Peptídeos/química , Adesividade , Adesivos/síntese química , Silicatos de Alumínio/química , Sequência de Aminoácidos , Animais , Materiais Biomiméticos/síntese química , Bivalves/fisiologia , Ouro/química , Dados de Sequência Molecular , Peptídeos/síntese química , Proteínas/química , Eletricidade Estática , Relação Estrutura-Atividade , Propriedades de Superfície , Termodinâmica
11.
J Am Chem Soc ; 134(3): 1746-53, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22176530

RESUMO

A molecular level understanding of interaction forces and dynamics between asymmetric apposing surfaces (including end-functionalized polymers) in water plays a key role in the utilization of molecular structures for smart and functional surfaces in biological, medical, and materials applications. To quantify interaction forces and binding dynamics between asymmetric apposing surfaces in terms of their chemical structure and molecular design we developed a novel surface forces apparatus experiment, using self-assembled monolayers (SAMs) on atomically smooth gold substrates. Varying the SAM head group functionality allowed us to quantitatively identify, rationalize, and therefore control which interaction forces dominated between the SAM surfaces and a surface coated with short-chain, amine end-functionalized polyethylene glycol (PEG) polymers extending from a lipid bilayer. Three different SAM-terminations were chosen for this study: (a) carboxylic acid, (b) alcohol, and (c) methyl head group terminations. These three functionalities allowed for the quantification of (a) specific acid-base bindings, (b) steric effects of PEG chains, and (c) adhesion of hydrophobic segments of the polymer backbone, all as a function of the solution pH. The pH-dependent acid-base binding appears to be a specific and charge mediated hydrogen bonding interaction between oppositely charged carboxylic acid and amine functionalities, at pH values above the acid pK(A) and below the amine pK(A). The long-range electrostatic "steering" of acid and base pairs leads to remarkably rapid binding formation and high binding probability of this specific binding even at distances close to full extension of the PEG tethers, a result which has potentially important implications for protein folding processes and enzymatic catalysis.


Assuntos
Bicamadas Lipídicas/química , Polietilenoglicóis/química , Ouro/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Eletricidade Estática , Propriedades de Superfície
12.
J Phys Chem B ; 126(32): 6039-6051, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35939324

RESUMO

Ion transport through electrolytes critically impacts the performance of batteries and other devices. Many frameworks used to model ion transport assume hydrodynamic mechanisms and focus on maximizing conductivity by minimizing viscosity. However, solid-state electrolytes illustrate that non-hydrodynamic ion transport can define device performance. Increasingly, selective transport mechanisms, such as hopping, are proposed for concentrated electrolytes. However, viscosity-conductivity scaling relationships in ionic liquids are often analyzed with hydrodynamic models. We report data-centric analyses of hydrodynamic transport models of viscosity-conductivity scaling in ionic liquids by merging three databases to bridge physical properties and computational descriptors. With this expansive database, we constrained scaling analyses using ion sizes defined from simulated volumes, as opposed to estimating sizes from activity coefficients. Remarkably, we find that many ionic liquids exhibit positive deviations from the Nernst-Einstein model, implying ions move faster than hydrodynamics should allow. We verify these findings using microrheology and conductivity experiments. We further show that machine learning tools can improve predictions of conductivity from molecular properties, including predictions from solely computational features. Our findings reveal that many ionic liquids exhibit super-hydrodynamic viscosity-conductivity scaling, suggesting mechanisms of correlated ion motion, which could be harnessed to enhance electrochemical device performance.


Assuntos
Líquidos Iônicos , Condutividade Elétrica , Fontes de Energia Elétrica , Eletrólitos/química , Líquidos Iônicos/química , Íons , Viscosidade
13.
Nat Chem ; 9(5): 473-479, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28430190

RESUMO

Cation-π interactions drive the self-assembly and cohesion of many biological molecules, including the adhesion proteins of several marine organisms. Although the origin of cation-π bonds in isolated pairs has been extensively studied, the energetics of cation-π-driven self-assembly in molecular films remains uncharted. Here we use nanoscale force measurements in combination with solid-state NMR spectroscopy to show that the cohesive properties of simple aromatic- and lysine-rich peptides rival those of the strong reversible intermolecular cohesion exhibited by adhesion proteins of marine mussel. In particular, we show that peptides incorporating the amino acid phenylalanine, a functional group that is conspicuously sparing in the sequences of mussel proteins, exhibit reversible adhesion interactions significantly exceeding that of analogous mussel-mimetic peptides. More broadly, we demonstrate that interfacial confinement fundamentally alters the energetics of cation-π-mediated assembly: an insight that should prove relevant for diverse areas, which range from rationalizing biological assembly to engineering peptide-based biomaterials.


Assuntos
Adesivos/química , Materiais Biomiméticos/química , Cátions/química , Peptídeos/química , Adesividade , Adsorção , Silicatos de Alumínio/química , Animais , Bivalves/química , Di-Hidroxifenilalanina/química , Ligação de Hidrogênio , Lisina/química , Eletricidade Estática
14.
Chem Commun (Camb) ; 53(7): 1214-1224, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28000809

RESUMO

Ionic liquids are pure salts that are liquid under ambient conditions. As liquids composed solely of ions, the scientific consensus has been that ionic liquids have exceedingly high ionic strengths and thus very short Debye screening lengths. However, several recent experiments from laboratories around the world have reported data for the approach of two surfaces separated by ionic liquids which revealed remarkable long range forces that appear to be electrostatic in origin. Evidence has accumulated demonstrating long range surface forces for several different combinations of ionic liquids and electrically charged surfaces, as well as for concentrated mixtures of inorganic salts in solvent. The original interpretation of these forces, that ionic liquids could be envisioned as "dilute electrolytes," was controversial, and the origin of long range forces in ionic liquids remains the subject of discussion. Here we seek to collate and examine the evidence for long range surface forces in ionic liquids, identify key outstanding questions, and explore possible mechanisms underlying the origin of these long range forces. Long range surface forces in ionic liquids and other highly concentrated electrolytes hold diverse implications from designing ionic liquids for energy storage applications to rationalizing electrostatic correlations in biological self-assembly.

15.
PLoS One ; 10(3): e0118183, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760327

RESUMO

The U.S. currently enjoys a position among the world's foremost innovative and scientifically advanced economies but the emergence of new economic powerhouses like China and India threatens to disrupt the global distribution of innovation and economic competitiveness. Among U.S. policy makers, the promotion of advanced education, particularly in the STEM (Science, Technology, Engineering and Mathematics) fields, has become a key strategy for ensuring the U.S.'s position as an innovative economic leader. Since approximately one third of science and engineering post-graduate students in the U.S. are foreign born, the future of the U.S. STEM educational system is intimately tied to issues of global competitiveness and American immigration policy. This study utilizes a combination of national education data, a survey of foreign-born STEM graduate students, and in-depth interviews of a sub-set of those students to explain how a combination of scientists' and engineers' educational decisions, as well as their experience in school, can predict a students' career path and geographical location, which can affect the long-term innovation environment in their home and destination country. This study highlights the fact that the increasing global competitiveness in STEM education and the complex, restrictive nature of U.S. immigration policies are contributing to an environment where the American STEM system may no longer be able to comfortably remain the premier destination for the world's top international students.


Assuntos
Emigrantes e Imigrantes/legislação & jurisprudência , Estudantes/psicologia , Coleta de Dados , Educação de Pós-Graduação , Engenharia/educação , Humanos , Ciência/educação , Estados Unidos
16.
ACS Nano ; 7(11): 10094-104, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24138532

RESUMO

We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in) and separation (jump-out from adhesive contact). Quantitative analysis of the results indicates that the Derjaguin-Landau-Verwey-Overbeek theory alone, i.e., the combination of electrostatic repulsion and van der Waals attraction, cannot fully describe the measured forces and that the additional measured adhesion is likely due to hydrophobic interactions. The surface interactions are highly pH-dependent, and a basic pH of 10 results in fully repulsive interactions at all distances, due to repulsive electrostatic and steric-hydration interactions, indicating that the PDMS is negatively charged at high pH. We describe an interaction potential with a parameter, known as the Hydra parameter, that can account for the extra attraction (low pH) due to hydrophobicity as well as the extra repulsion (high pH) due to hydrophilic (steric-hydration) interactions. The interaction potential is general and provides a quantitative measure of interfacial hydrophobicity/hydrophilicity for any set of interacting surfaces in aqueous solution.


Assuntos
Silicones/química , Adsorção , Silicatos de Alumínio/química , Materiais Biocompatíveis/química , Dimetilpolisiloxanos/química , Ouro/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana , Nanotecnologia , Polímeros/química , Soluções , Eletricidade Estática , Propriedades de Superfície , Água/química
17.
J Phys Chem B ; 117(51): 16369-87, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24229092

RESUMO

We review recent developments in experimental techniques that simultaneously combine measurements of the interaction forces or energies between two extended surfaces immersed in electrolyte solutions-primarily aqueous-with simultaneous monitoring of their (electro)chemical reactions and controlling the electrochemical surface potential of at least one of the surfaces. Combination of these complementary techniques allows for simultaneous real time monitoring of angstrom level changes in surface thickness and roughness, surface-surface interaction energies, and charge and mass transferred via electrochemical reactions, dissolution, and adsorption, and/or charging of electric double layers. These techniques employ the surface forces apparatus (SFA) combined with various "electrochemical attachments" for in situ measurements of various physical and (electro)chemical properties (e.g., cyclic voltammetry), optical imaging, and electric potentials and currents generated naturally during an interaction, as well as when electric fields (potential differences) are applied between the surfaces and/or solution-in some cases allowing for the chemical reaction equation to be unambiguously determined. We discuss how the physical interactions between two different surfaces when brought close to each other (<10 nm) can affect their chemistry, and suggest further extensions of these techniques to biological systems and simultaneous in situ spectroscopic measurements for chemical analysis.


Assuntos
Eletroquímica/métodos , Adsorção , Eletricidade , Líquidos Iônicos/química , Fenômenos Mecânicos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa