Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nucleic Acids Res ; 49(11): 6249-6266, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34060631

RESUMO

Transcription is a vital process activated by transcription factor (TF) binding. The active gene releases a burst of transcripts before turning inactive again. While the basic course of transcription is well understood, it is unclear how binding of a TF affects the frequency, duration and size of a transcriptional burst. We systematically varied the residence time and concentration of a synthetic TF and characterized the transcription of a synthetic reporter gene by combining single molecule imaging, single molecule RNA-FISH, live transcript visualisation and analysis with a novel algorithm, Burst Inference from mRNA Distributions (BIRD). For this well-defined system, we found that TF binding solely affected burst frequency and variations in TF residence time had a stronger influence than variations in concentration. This enabled us to device a model of gene transcription, in which TF binding triggers multiple successive steps before the gene transits to the active state and actual mRNA synthesis is decoupled from TF presence. We quantified all transition times of the TF and the gene, including the TF search time and the delay between TF binding and the onset of transcription. Our quantitative measurements and analysis revealed detailed kinetic insight, which may serve as basis for a bottom-up understanding of gene regulation.


Assuntos
Fatores de Transcrição/metabolismo , Ativação Transcricional , Linhagem Celular , DNA/metabolismo , Genes Reporter , Cinética , Efetores Semelhantes a Ativadores de Transcrição/química , Fatores de Transcrição/química , Transcrição Gênica
2.
BMC Bioinformatics ; 23(1): 13, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986805

RESUMO

BACKGROUND: The temporal progression of many fundamental processes in cells and organisms, including homeostasis, differentiation and development, are governed by gene regulatory networks (GRNs). GRNs balance fluctuations in the output of their genes, which trace back to the stochasticity of molecular interactions. Although highly desirable to understand life processes, predicting the temporal progression of gene products within a GRN is challenging when considering stochastic events such as transcription factor-DNA interactions or protein production and degradation. RESULTS: We report a method to simulate and infer GRNs including genes and biochemical reactions at molecular detail. In our approach, we consider each network element to be isolated from other elements during small time intervals, after which we synchronize molecule numbers across all network elements. Thereby, the temporal behaviour of network elements is decoupled and can be treated by local stochastic or deterministic solutions. We demonstrate the working principle of this modular approach with a repressive gene cascade comprising four genes. By considering a deterministic time evolution within each time interval for all elements, our method approaches the solution of the system of deterministic differential equations associated with the GRN. By allowing genes to stochastically switch between on and off states or by considering stochastic production of gene outputs, we are able to include increasing levels of stochastic detail and approximate the solution of a Gillespie simulation. Thereby, CaiNet is able to reproduce noise-induced bi-stability and oscillations in dynamically complex GRNs. Notably, our modular approach further allows for a simple consideration of deterministic delays. We further infer relevant regulatory connections and steady-state parameters of a GRN of up to ten genes from steady-state measurements by identifying each gene of the network with a single perceptron in an artificial neuronal network and using a gradient decent method originally designed to train recurrent neural networks. To facilitate setting up GRNs and using our simulation and inference method, we provide a fast computer-aided interactive network simulation environment, CaiNet. CONCLUSION: We developed a method to simulate GRNs at molecular detail and to infer the topology and steady-state parameters of GRNs. Our method and associated user-friendly framework CaiNet should prove helpful to analyze or predict the temporal progression of reaction networks or GRNs in cellular and organismic biology. CaiNet is freely available at https://gitlab.com/GebhardtLab/CaiNet .


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Algoritmos , Simulação por Computador , Cinética , Modelos Genéticos , Processos Estocásticos , Fatores de Transcrição
3.
Proc Natl Acad Sci U S A ; 116(3): 880-889, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598445

RESUMO

Serum response factor (SRF) mediates immediate early gene (IEG) and cytoskeletal gene expression programs in almost any cell type. So far, SRF transcriptional dynamics have not been investigated at single-molecule resolution. We provide a study of single Halo-tagged SRF molecules in fibroblasts and primary neurons. In both cell types, individual binding events of SRF molecules segregated into three chromatin residence time regimes, short, intermediate, and long binding, indicating a cell type-independent SRF property. The chromatin residence time of the long bound fraction was up to 1 min in quiescent cells and significantly increased upon stimulation. Stimulation also enhanced the long bound SRF fraction at specific timepoints (20 and 60 min) in both cell types. These peaks correlated with activation of the SRF cofactors MRTF-A and MRTF-B (myocardin-related transcription factors). Interference with signaling pathways and cofactors demonstrated modulation of SRF chromatin occupancy by actin signaling, MAP kinases, and MRTFs.


Assuntos
Cromatina/metabolismo , Fator de Resposta Sérica/metabolismo , Actinas/metabolismo , Animais , Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Células NIH 3T3 , Neurônios/metabolismo , Imagem Individual de Molécula , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
4.
Nucleic Acids Res ; 45(19): 11121-11130, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977492

RESUMO

Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation.


Assuntos
Regulação da Expressão Gênica , Efetores Semelhantes a Ativadores de Transcrição/genética , Fatores de Transcrição/genética , Sítios de Ligação/genética , Western Blotting , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Microscopia de Fluorescência , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Fatores de Transcrição/metabolismo
5.
Biophys J ; 112(10): 2051-2055, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487148

RESUMO

The three-dimensional arrangement of chromatin encodes regulatory traits important for nuclear processes such as transcription and replication. Chromatin topology is in part mediated by the architectural protein CCCTC-binding factor (CTCF) that binds to the boundaries of topologically associating domains. Whereas sites of CTCF interactions are well characterized, little is known on how long CTCF binds to chromatin and how binding evolves during the cell cycle. We monitored CTCF-chromatin interactions by live cell single molecule tracking in different phases of the cell cycle. In G1-, S-, and G2-phases, a majority of CTCF molecules was bound transiently (∼0.2 s) to chromatin, whereas minor fractions were bound dynamically (∼4 s) or stably (>15 min). During mitosis, CTCF was mostly excluded from chromatin. Our data suggest that CTCF scans DNA in search for two different subsets of specific target sites and provide information on the timescales over which topologically associating domains might be restructured. During S-phase, dynamic and stable interactions decreased considerably compared to G1-phase, but were resumed in G2-phase, indicating that specific interactions need to be dissolved for replication to proceed.


Assuntos
Ciclo Celular/fisiologia , Cromatina/metabolismo , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular , Humanos , Cinética , Imagem Molecular , Ligação Proteica
6.
Proc Natl Acad Sci U S A ; 111(2): 681-6, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379392

RESUMO

Superresolution microscopy based on single-molecule centroid determination has been widely applied to cellular imaging in recent years. However, quantitative imaging of the mammalian nucleus has been challenging due to the lack of 3D optical sectioning methods for normal-sized cells, as well as the inability to accurately count the absolute copy numbers of biomolecules in highly dense structures. Here we report a reflected light-sheet superresolution microscopy method capable of imaging inside the mammalian nucleus with superior signal-to-background ratio as well as molecular counting with single-copy accuracy. Using reflected light-sheet superresolution microscopy, we probed the spatial organization of transcription by RNA polymerase II (RNAP II) molecules and quantified their global extent of clustering inside the mammalian nucleus. Spatiotemporal clustering analysis that leverages on the blinking photophysics of specific organic dyes showed that the majority (>70%) of the transcription foci originate from single RNAP II molecules, and no significant clustering between RNAP II molecules was detected within the length scale of the reported diameter of "transcription factories." Colocalization measurements of RNAP II molecules equally labeled by two spectrally distinct dyes confirmed the primarily unclustered distribution, arguing against a prevalent existence of transcription factories in the mammalian nucleus as previously proposed. The methods developed in our study pave the way for quantitative mapping and stoichiometric characterization of key biomolecular species deep inside mammalian cells.


Assuntos
Núcleo Celular/metabolismo , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , RNA Polimerase II/metabolismo , Transcrição Gênica/fisiologia , Linhagem Celular Tumoral , Humanos , Plasmídeos/genética
7.
Nat Methods ; 10(5): 421-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23524394

RESUMO

Imaging single fluorescent proteins in living mammalian cells is challenged by out-of-focus fluorescence excitation. To reduce out-of-focus fluorescence we developed reflected light-sheet microscopy (RLSM), a fluorescence microscopy method allowing selective plane illumination throughout the nuclei of living mammalian cells. A thin light sheet parallel to the imaging plane and close to the sample surface is generated by reflecting an elliptical laser beam incident from the top by 90° with a small mirror. The thin light sheet allows for an increased signal-to-background ratio superior to that in previous illumination schemes and enables imaging of single fluorescent proteins with up to 100-Hz time resolution. We demonstrated the single-molecule sensitivity of RLSM by measuring the DNA-bound fraction of glucocorticoid receptor (GR) and determining the residence times on DNA of various oligomerization states and mutants of GR and estrogen receptor-α (ER), which permitted us to resolve different modes of DNA binding of GR. We demonstrated two-color single-molecule imaging by observing the spatiotemporal colocalization of two different protein pairs. Our single-molecule measurements and statistical analysis revealed dynamic properties of transcription factors.


Assuntos
DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Mamíferos , Microscopia de Fluorescência , Ligação Proteica
8.
Proc Natl Acad Sci U S A ; 110(12): 4500-5, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23487746

RESUMO

In single-molecule laser optical tweezer (LOT) pulling experiments, a protein or RNA is juxtaposed between DNA handles that are attached to beads in optical traps. The LOT generates folding trajectories under force in terms of time-dependent changes in the distance between the beads. How to construct the full intrinsic folding landscape (without the handles and beads) from the measured time series is a major unsolved problem. By using rigorous theoretical methods--which account for fluctuations of the DNA handles, rotation of the optical beads, variations in applied tension due to finite trap stiffness, as well as environmental noise and limited bandwidth of the apparatus--we provide a tractable method to derive intrinsic free-energy profiles. We validate the method by showing that the exactly calculable intrinsic free-energy profile for a generalized Rouse model, which mimics the two-state behavior in nucleic acid hairpins, can be accurately extracted from simulated time series in a LOT setup regardless of the stiffness of the handles. We next apply the approach to trajectories from coarse-grained LOT molecular simulations of a coiled-coil protein based on the GCN4 leucine zipper and obtain a free-energy landscape that is in quantitative agreement with simulations performed without the beads and handles. Finally, we extract the intrinsic free-energy landscape from experimental LOT measurements for the leucine zipper.


Assuntos
DNA/química , Zíper de Leucina , Modelos Químicos , Conformação de Ácido Nucleico , Dobramento de Proteína , RNA/química , Pinças Ópticas
9.
Proc Natl Acad Sci U S A ; 107(5): 2013-8, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133846

RESUMO

Kinetic bulk and single molecule folding experiments characterize barrier properties but the shape of folding landscapes between barrier top and native state is difficult to access. Here, we directly extract the full free energy landscape of a single molecule of the GCN4 leucine zipper using dual beam optical tweezers. To this end, we use deconvolution force spectroscopy to follow an individual molecule's trajectory with high temporal and spatial resolution. We find a heterogeneous energy landscape of the GCN4 leucine zipper domain. The energy profile is divided into two stable C-terminal heptad repeats and two less stable repeats at the N-terminus. Energies and transition barrier positions were confirmed by single molecule kinetic analysis. We anticipate that deconvolution sampling is a powerful tool for the model-free investigation of protein energy landscapes.


Assuntos
Dobramento de Proteína , Proteínas/química , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fenômenos Biofísicos , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular , Pinças Ópticas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Termodinâmica
10.
Proc Natl Acad Sci U S A ; 107(23): 10460-5, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20498083

RESUMO

Cilia are microtubule-based protrusions of the plasma membrane found on most eukaryotic cells. Their assembly is mediated through the conserved intraflagellar transport mechanism. One class of motor proteins involved in intraflagellar transport, kinesin-2, is unique among kinesin motors in that some of its members are composed of two distinct polypeptides. However, the biological reason for heterodimerization has remained elusive. Here we provide several interdependent reasons for the heterodimerization of the kinesin-2 motor KLP11/KLP20 of Caenorhabditis elegans cilia. One motor domain is unprocessive as a homodimer, but heterodimerization with a processive partner generates processivity. The "unprocessive" subunit is kept in this partnership as it mediates an asymmetric autoregulation of the motor activity. Finally, heterodimerization is necessary to bind KAP1, the in vivo link between motor and cargo.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Movimento , Multimerização Proteica , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Cílios/metabolismo , Cinesinas/química , Cinética , Dados de Sequência Molecular , Alinhamento de Sequência
11.
Nat Commun ; 14(1): 6947, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935654

RESUMO

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Assuntos
Fatores Reguladores de Interferon , Linfoma , Humanos , Linfócitos B/metabolismo , DNA , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linfoma/genética
12.
FEBS J ; 289(19): 5718-5743, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34213830

RESUMO

The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Animais , DNA , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Ligantes , Camundongos , Ratos , Receptores Citoplasmáticos e Nucleares , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/genética
13.
Open Biol ; 12(5): 210383, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35537478

RESUMO

In cells, proteins encoded by the same gene do not all behave uniformly but engage in functional subpopulations induced by spatial or temporal segregation. While conventional microscopy has limitations in revealing such spatial and temporal diversity, single-molecule tracking (SMT) microscopy circumvented this problem and allows for high-resolution imaging and quantification of dynamic single-molecule properties. Particularly in the nucleus, SMT has identified specific DNA residence times of transcription factors (TFs), DNA-bound TF fractions and positions of transcriptional hot-spots upon cell stimulation. By contrast to cell stimulation, SMT has not been employed to follow dynamic TF changes along stages of cell differentiation. Herein, we analysed the serum response factor (SRF), a TF involved in the differentiation of many cell types to study nuclear single-molecule dynamics in neuronal differentiation. Our data in living mouse hippocampal neurons show dynamic changes in SRF DNA residence time and SRF DNA-bound fraction between the stages of adhesion, neurite growth and neurite differentiation in axon and dendrites. Using TALM (tracking and localization microscopy), we identified nuclear positions of SRF clusters and observed changes in their numbers and size during differentiation. Furthermore, we show that the SRF cofactor MRTF-A (myocardin-related TF or MKL1) responds to cell activation by enhancing the long-bound DNA fraction. Finally, a first SMT colocalization study of two proteins was performed in living cells showing enhanced SRF/MRTF-A colocalization upon stimulation. In summary, SMT revealed modulation of dynamic TF properties during cell stimulation and differentiation.


Assuntos
Fator de Resposta Sérica , Fatores de Transcrição , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Camundongos , Neurônios/metabolismo , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/metabolismo
14.
Nat Commun ; 13(1): 6101, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243734

RESUMO

The hindered diffusion model postulates that the movement of a signaling molecule through an embryo is affected by tissue geometry and binding-mediated hindrance, but these effects have not been directly demonstrated in vivo. Here, we visualize extracellular movement and binding of individual molecules of the activator-inhibitor signaling pair Nodal and Lefty in live developing zebrafish embryos using reflected light-sheet microscopy. We observe that diffusion coefficients of molecules are high in extracellular cavities, whereas mobility is reduced and bound fractions are high within cell-cell interfaces. Counterintuitively, molecules nevertheless accumulate in cavities, which we attribute to the geometry of the extracellular space by agent-based simulations. We further find that Nodal has a larger bound fraction than Lefty and shows a binding time of tens of seconds. Together, our measurements and simulations provide direct support for the hindered diffusion model and yield insights into the nanometer-to-micrometer-scale mechanisms that lead to macroscopic signal dispersal.


Assuntos
Proteína Nodal , Peixe-Zebra , Animais , Difusão , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Determinação Direita-Esquerda/genética , Proteína Nodal/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Nat Commun ; 13(1): 5480, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123343

RESUMO

TAR DNA binding protein 43 (TDP-43) is closely related to the pathogenesis of amyotrophic lateral sclerosis (ALS) and translocates to stress granules (SGs). The role of SGs as aggregation-promoting "crucibles" for TDP-43, however, is still under debate. We analyzed TDP-43 mobility and localization under different stress and recovery conditions using live cell single-molecule tracking and super-resolution microscopy. Besides reduced mobility within SGs, a stress induced decrease of TDP-43 mobility in the cytoplasm and the nucleus was observed. Stress removal led to a recovery of TDP-43 mobility, which strongly depended on the stress duration. 'Stimulated-emission depletion microscopy' (STED) and 'tracking and localization microscopy' (TALM) revealed not only TDP-43 substructures within stress granules but also numerous patches of slow TDP-43 species throughout the cytoplasm. This work provides insights into the aggregation of TDP-43 in living cells and provide evidence suggesting that TDP-43 oligomerization and aggregation takes place in the cytoplasm separate from SGs.


Assuntos
Esclerose Lateral Amiotrófica , Grânulos de Estresse , Esclerose Lateral Amiotrófica/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos
16.
Nat Commun ; 13(1): 1346, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292632

RESUMO

During transcription, RNA Polymerase II (RNAPII) is spatially organised within the nucleus into clusters that correlate with transcription activity. While this is a hallmark of genome regulation in mammalian cells, the mechanisms concerning the assembly, organisation and stability remain unknown. Here, we have used combination of single molecule imaging and genomic approaches to explore the role of nuclear myosin VI (MVI) in the nanoscale organisation of RNAPII. We reveal that MVI in the nucleus acts as the molecular anchor that holds RNAPII in high density clusters. Perturbation of MVI leads to the disruption of RNAPII localisation, chromatin organisation and subsequently a decrease in gene expression. Overall, we uncover the fundamental role of MVI in the spatial regulation of gene expression.


Assuntos
Cadeias Pesadas de Miosina , RNA Polimerase II , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mamíferos/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
18.
Sci Rep ; 11(1): 9465, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947895

RESUMO

Imaging, tracking and analyzing individual biomolecules in living systems is a powerful technology to obtain quantitative kinetic and spatial information such as reaction rates, diffusion coefficients and localization maps. Common tracking tools often operate on single movies and require additional manual steps to analyze whole data sets or to compare different experimental conditions. We report a fast and comprehensive single molecule tracking and analysis framework (TrackIt) to simultaneously process several multi-movie data sets. A user-friendly GUI offers convenient tracking visualization, multiple state-of-the-art analysis procedures, display of results, and data im- and export at different levels to utilize external software tools. We applied our framework to quantify dissociation rates of a transcription factor in the nucleus and found that tracking errors, similar to fluorophore photobleaching, have to be considered for reliable analysis. Accordingly, we developed an algorithm, which accounts for both tracking losses and suggests optimized tracking parameters when evaluating reaction rates. Our versatile and extensible framework facilitates quantitative analysis of single molecule experiments at different experimental conditions.

19.
Front Oncol ; 11: 689063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222016

RESUMO

Rearrangements in the Mixed Lineage Leukemia breakpoint cluster region (MLLbcr) are frequently involved in therapy-induced leukemia, a severe side effect of anti-cancer therapies. Previous work unraveled Endonuclease G as the critical nuclease causing initial breakage in the MLLbcr in response to different types of chemotherapeutic treatment. To identify peptides protecting against therapy-induced leukemia, we screened a hemofiltrate-derived peptide library by use of an enhanced green fluorescent protein (EGFP)-based chromosomal reporter of MLLbcr rearrangements. Chromatographic purification of one active fraction and subsequent mass spectrometry allowed to isolate a C-terminal 27-mer of fibrinogen α encompassing amino acids 603 to 629. The chemically synthesized peptide, termed Fα27, inhibited MLLbcr rearrangements in immortalized hematopoietic cells following treatment with the cytostatics etoposide or doxorubicin. We also provide evidence for protection of primary human hematopoietic stem and progenitor cells from therapy-induced MLLbcr breakage. Of note, fibrinogen has been described to activate toll-like receptor 4 (TLR4). Dissecting the Fα27 mode-of action revealed association of the peptide with TLR4 in an antagonistic fashion affecting downstream NFκB signaling and pro-inflammatory cytokine production. In conclusion, we identified a hemofiltrate-derived peptide inhibitor of the genome destabilizing events causing secondary leukemia in patients undergoing chemotherapy.

20.
Cancers (Basel) ; 13(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34638511

RESUMO

The Notch signaling pathway is an evolutionary conserved signal transduction cascade present in almost all tissues and is required for embryonic and postnatal development, as well as for stem cell maintenance, but it is also implicated in tumorigenesis including pancreatic cancer and leukemia. The transcription factor RBPJ forms a coactivator complex in the presence of a Notch signal, whereas it represses Notch target genes in the absence of a Notch stimulus. In the pancreas, a specific paralog of RBPJ, called RBPJL, is expressed and found as part of the heterotrimeric PTF1-complex. However, the function of RBPJL in Notch signaling remains elusive. Using molecular modeling, biochemical and functional assays, as well as single-molecule time-lapse imaging, we show that RBPJL and RBPJ, despite limited sequence homology, possess a high degree of structural similarity. RBPJL is specifically expressed in the exocrine pancreas, whereas it is mostly undetectable in pancreatic tumour cell lines. Importantly, RBPJL is not able to interact with Notch-1 to -4 and it does not support Notch-mediated transactivation. However, RBPJL can bind to canonical RBPJ DNA elements and shows migration dynamics comparable to that of RBPJ in the nuclei of living cells. Importantly, RBPJL is able to interact with SHARP/SPEN, the central corepressor of the Notch pathway. In line with this, RBPJL is able to fully reconstitute transcriptional repression at Notch target genes in cells lacking RBPJ. Together, RBPJL can act as an antagonist of RBPJ, which renders cells unresponsive to the activation of Notch.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa