Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 44(2): 838-51, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26531823

RESUMO

Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.


Assuntos
Eritroblastos/fisiologia , Eritropoese/genética , Regulação da Expressão Gênica , Íntrons , Proteínas de Transporte de Cátions/genética , Diferenciação Celular/genética , Núcleo Celular/genética , Células Cultivadas , Análise por Conglomerados , Códon sem Sentido , Eritroblastos/citologia , Éxons , Humanos , Íntrons/genética , Proteínas dos Microfilamentos/genética , Proteínas Mitocondriais/genética , Degradação do RNAm Mediada por Códon sem Sentido , Fosfoproteínas/genética , Sítios de Splice de RNA , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/genética , Espectrina/genética
2.
Blood ; 113(14): 3363-70, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19196664

RESUMO

Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.


Assuntos
Processamento Alternativo/genética , Eritropoese/genética , Regulação da Expressão Gênica , Precursores de RNA/genética , Diferenciação Celular/genética , Células Cultivadas , Eritroblastos/metabolismo , Eritroblastos/fisiologia , Éxons , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Precursores de RNA/metabolismo
3.
Nucleic Acids Res ; 33(2): 714-24, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15691898

RESUMO

Previous studies have identified UGCAUG as an intron splicing enhancer that is frequently located adjacent to tissue-specific alternative exons in the human genome. Here, we show that UGCAUG is phylogenetically and spatially conserved in introns that flank brain-enriched alternative exons from fish to man. Analysis of sequence from the mouse, rat, dog, chicken and pufferfish genomes revealed a strongly statistically significant association of UGCAUG with the proximal intron region downstream of brain-enriched alternative exons. The number, position and sequence context of intronic UGCAUG elements were highly conserved among mammals and in chicken, but more divergent in fish. Control datasets, including constitutive exons and non-tissue-specific alternative exons, exhibited a much lower incidence of closely linked UGCAUG elements. We propose that the high sequence specificity of the UGCAUG element, and its unique association with tissue-specific alternative exons, mark it as a critical component of splicing switch mechanism(s) designed to activate a limited repertoire of splicing events in cell type-specific patterns. We further speculate that highly conserved UGCAUG-binding protein(s) related to the recently described Fox-1 splicing factor play a critical role in mediating this specificity.


Assuntos
Processamento Alternativo , Íntrons , Filogenia , Sequências Reguladoras de Ácido Ribonucleico , Animais , Sequência de Bases , Encéfalo/metabolismo , Galinhas/genética , Sequência Conservada , Cães , Éxons , Humanos , Camundongos , Ratos , Tetraodontiformes/genética , Distribuição Tecidual
4.
J Biol Chem ; 281(18): 12468-74, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16537540

RESUMO

Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins to silencer elements in the exon and that down-regulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This article demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.


Assuntos
Proteínas Sanguíneas/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Proteínas Sanguíneas/metabolismo , Diferenciação Celular , Proteínas do Citoesqueleto , Regulação para Baixo , Eritroblastos/metabolismo , Éxons , Regulação da Expressão Gênica , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Íntrons , Proteínas de Membrana , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Fatores de Processamento de RNA , RNA Interferente Pequeno/metabolismo
5.
Blood ; 101(10): 4164-71, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12522012

RESUMO

Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Identified far upstream of exon 2 in both mouse and human genomes were 3 mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C; all 3 are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80-kDa 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135-kDa isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated up-regulation of 80-kDa 4.1R during terminal erythroid differentiation. Together, these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.


Assuntos
Processamento Alternativo , Proteínas do Citoesqueleto , Éxons , Proteínas de Membrana , Neuropeptídeos , Proteínas/genética , Animais , Sequência de Bases , Northern Blotting , Sequência Consenso , Primers do DNA , Eritroblastos/metabolismo , Amplificação de Genes , Humanos , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Alinhamento de Sequência , Transcrição Gênica
6.
EMBO J ; 21(22): 6195-204, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12426391

RESUMO

A physiologically important alternative pre-mRNA splicing switch, involving activation of protein 4.1R exon 16 (E16) splicing, is required for the establishment of proper mechanical integrity of the erythrocyte membrane during erythropoiesis. Here we identify a conserved exonic splicing silencer element (CE(16)) in E16 that interacts with hnRNP A/B proteins and plays a role in repression of E16 splicing during early erythropoiesis. Experiments with model pre-mRNAs showed that CE(16) can repress splicing of upstream introns, and that mutagenesis or replacement of CE(16) can relieve this inhibition. An affinity selection assay with biotinylated CE(16) RNA demonstrated specific binding of hnRNP A/B proteins. Depletion of hnRNP A/B proteins from nuclear extract significantly increased E16 inclusion, while repletion with recombinant hnRNP A/B restored E16 silencing. Most importantly, differentiating mouse erythroblasts exhibited a stage-specific activation of the E16 splicing switch in concert with a dramatic and specific down-regulation of hnRNP A/B protein expression. These findings demonstrate that natural developmental changes in hnRNP A/B proteins can effect physiologically important switches in pre-mRNA splicing.


Assuntos
Processamento Alternativo , Proteínas do Citoesqueleto , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Regulação da Expressão Gênica/genética , Inativação Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/biossíntese , Proteínas de Membrana , Neuropeptídeos , Proteínas/genética , Precursores de RNA/metabolismo , Sequências Reguladoras de Ácido Nucleico , Animais , Sequência de Bases , Sequência Consenso , Células Precursoras Eritroides/citologia , Éxons/genética , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Íntrons/genética , Camundongos , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Precursores de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Transfecção , Vertebrados/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa