Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 44(17): 5828-5845, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37753705

RESUMO

This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (sFNC and ICA), and diffusion MRI data (FA maps). With our approach, we find that heterogeneity in schizophrenia is potentially a function of modality pairs. Results show (1) schizophrenia is highly multimodal and includes changes in specific networks, (2) non-linear relationships with schizophrenia are observed when interpolating among shared latent dimensions, and (3) we observe a decrease in the modularity of functional connectivity and decreased visual-sensorimotor connectivity for schizophrenia patients for the FA-sFNC and sMRI-sFNC modality pairs, respectively. Additionally, our results generally indicate decreased fractional corpus callosum anisotropy, and decreased spatial ICA map and voxel-based morphometry strength in the superior frontal lobe as found in the FA-sFNC, sMRI-FA, and sMRI-ICA modality pair clusters. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data which we hope challenges the reader to think differently about how modalities interact.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem , Imagem de Difusão por Ressonância Magnética
2.
medRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292973

RESUMO

This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. By linking colors to private and shared information from modalities, we introduce chromatic fusion, a framework that allows for intuitively interpreting multimodal data. We test our framework on structural, functional, and diffusion modality pairs. In this framework, we use a multimodal variational autoencoder to learn separate latent subspaces; a private space for each modality, and a shared space between both modalities. These subspaces are then used to cluster subjects, and colored based on their distance from the variational prior, to obtain meta-chromatic patterns (MCPs). Each subspace corresponds to a different color, red is the private space of the first modality, green is the shared space, and blue is the private space of the second modality. We further analyze the most schizophrenia-enriched MCPs for each modality pair and find that distinct schizophrenia subgroups are captured by schizophrenia-enriched MCPs for different modality pairs, emphasizing schizophrenia's heterogeneity. For the FA-sFNC, sMRI-ICA, and sMRI-ICA MCPs, we generally find decreased fractional corpus callosum anisotropy and decreased spatial ICA map and voxel-based morphometry strength in the superior frontal lobe for schizophrenia patients. To additionally highlight the importance of the shared space between modalities, we perform a robustness analysis of the latent dimensions in the shared space across folds. These robust latent dimensions are subsequently correlated with schizophrenia to reveal that for each modality pair, multiple shared latent dimensions strongly correlate with schizophrenia. In particular, for FA-sFNC and sMRI-sFNC shared latent dimensions, we respectively observe a reduction in the modularity of the functional connectivity and a decrease in visual-sensorimotor connectivity for schizophrenia patients. The reduction in modularity couples with increased fractional anisotropy in the left part of the cerebellum dorsally. The reduction in the visual-sensorimotor connectivity couples with a reduction in the voxel-based morphometry generally but increased dorsal cerebellum voxel-based morphometry. Since the modalities are trained jointly, we can also use the shared space to try and reconstruct one modality from the other. We show that cross-reconstruction is possible with our network and is generally much better than depending on the variational prior. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data that we hope challenges the reader to think differently about how modalities interact.

3.
Front Psychiatry ; 13: 846201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370828

RESUMO

Introduction: Childhood and adolescence are crucial periods for brain and behavioral development. However, it is not yet clear how and when deviations from typical brain development are related to broad domains of psychopathology. Methods: Using three waves of neuroimaging data within the population-based Generation R Study sample, spanning a total age range of 6-16 years, we applied normative modeling to establish typical development curves for (sub-)cortical volume in 37 brain regions, and cortical thickness in 32 brain regions. Z-scores representing deviations from typical development were extracted and related to internalizing, externalizing and dysregulation profile (DP) symptoms. Results: Normative modeling showed regional differences in developmental trajectories. Psychopathology symptoms were related to negative deviations from typical development for cortical volume in widespread regions of the cortex and subcortex, and to positive deviations from typical development for cortical thickness in the orbitofrontal, frontal pole, pericalcarine and posterior cingulate regions of the cortex. Discussion: Taken together, this study charts developmental curves across the cerebrum for (sub-)cortical volume and cortical thickness. Our findings show that psychopathology symptoms, are associated with widespread differences in brain development, in which those with DP symptoms are most heavily affected.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa