Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(1): 96-108, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847520

RESUMO

In six of seven cases, direct anodic oxidation of the ethynyl group of an ethynylphenyl-derivatized free-base porphyrin gave modified glassy carbon electrodes in which the porphyrin was strongly surface-bound, most likely in a perpendicular geometry through covalent attachment of the ethynyl group to a surface carbon atom. The porphyrins each contained an ethynylphenyl group in one meso position and varied in the groups present in the other three meso positions. Electrografted 5,10,15,20-tetrakis(ethynylphenyl)porphyrin, H21, which has ethynyl moieties in all four meso positions, has well-defined surface voltammetry and grows to multilayer levels upon repeated cyclic voltammetry (CV) deposition scans. Multilayering was not observed to the same degree for monoethynylphenyl-substituted porphyrins and became progressively less for porphyrins having groups in the 15-meso position that were more protective against ethynyl radical attack. Clean molecular monolayer-level coverage was observed for 5-ethynylphenyl-10,20-bis(3-methoxyphenyl)-15-hexylporphyrin, H25. Owing to the fact that the ethynyl oxidation potential (1.1 to 1.5 V vs ferrocene) is more positive than that of the second macrocycle oxidation, the longevities and follow-up reactions of the porphyrin dications were also studied by CV, chemical oxidation, and optical spectroscopy in homogeneous solution. The primary follow-up products of the doubly oxidized porphyrins, whether surface-bound or in solution, were pyrrole-protonated species that were easily reduced back to the neutral porphyrin.

2.
Langmuir ; 34(4): 1327-1339, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29309154

RESUMO

Two ethynyl-derivatized isomers of bis(fulvalene)diiron (BFD, 1,1'-biferrocenylene) were prepared and covalently attached to glassy carbon electrodes through their ethynyl group by three different electrode modification methods. Cyclic voltammetry and square wave (SW) voltammetry were used to characterize surface coverages of 1.4-5.5 × 10-10 mol cm-2, the higher of these corresponding to roughly a monolayer, based on computation of an idealized close-packing structure for ethynylbis(fulvalene)diiron (E-BFD) on a solid surface. In a dichloromethane solution containing a smaller electrolyte anion such as [PF6]- or [ClO4]-, the E-BFD-modified electrodes exhibited two quasi-Nernstian one-electron oxidations. In contrast, the current for the second oxidation process, [E-BFD]+/2+, was diminished in electrolytes containing one of the large fluoroaryl borate anions, [B(C6F5)4]- or [B(C6H3(CF3)2)4]-. The effect was enhanced for electrodes having higher surface coverages being probed at shorter voltammetric time scales. SW voltammetry showed that the diminished currents for [E-BFD]+/2+ in large-anion electrolytes are not caused by slow electron transfer. Rather, they are attributed to mixed diffusivity of the counter-anions at the electrode/solution interface, as [E-BFD]+ and the anion form the optimum (lowest-energy) configuration of a 1:1 ion pair. The interior transport of the anion required to reach this configuration may be sterically encumbered, accounting for the diminished charge transfer observed with electrolytes containing large anions.

3.
Langmuir ; 32(6): 1645-57, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26756403

RESUMO

The electrochemical oxidation of ferrocenes having an H- or Li-terminated ethynyl group has been studied, especially as it relates to their covalent anchoring to carbon surfaces. The anodic oxidation of lithioethynylferrocene (1-Li) results in rapid loss of Li(+) and formation of the ethynyl-based radical FeCp(η(5)-C5H4)(C≡C), (1, Cp = η(5)-C5H5), which reacts with the electrode. Chemically modified electrodes (CMEs) were thereby produced containing strongly bonded, ethynyl-linked monolayers and electrochemically controlled multilayers. Strong attachments of ethynylferrocenes to gold and platinum surfaces were also possible. The lithiation/anodic oxidation process is a mirror analogue of the diazonium/cathodic reduction process for preparation of aryl-modified CMEs. A second method produced an ethynylferrocene-modified electrode by direct anodic oxidation of the H-terminated ethynylferrocene (1-H) at a considerably more positive potential. Both processes produced robust modified electrodes with well-defined ferrocene-based surface cyclic voltammetry waves that remained unchanged for as many as 10(4) scans. Ferrocene derivatives in which the ethynyl moiety was separated from the cyclopentadienyl ring by an ether group showed very similar behavior. DFT calculations were performed on the relevant redox states of 1-H, 1-Li, and 1, with emphasis on the ferrocenyl vs ethynyl character of their high valence orbitals. Whereas the HOMOs of both 1-H and 1-Li have some ethynyl character, the SOMOs of the corresponding monocations are strictly ferrocenium in makeup. Predominant ethynyl character returns to the highest valence orbitals after loss of Li(+) from [1-Li](+) or loss of H(+) from [1-H](2+). These anodic processes hold promise for the controlled chemical modification of carbon and other electrode surfaces by a variety of ethynyl or alkynyl-linked organic and metal-containing systems.

4.
Chemistry ; 20(49): 16216-27, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25298226

RESUMO

In contrast to ruthenocene [Ru(η(5) -C5 H5 )2 ] and dimethylruthenocene [Ru(η(5) -C5 H4 Me)2 ] (7), chemical oxidation of highly strained, ring-tilted [2]ruthenocenophane [Ru(η(5) -C5 H4 )2 (CH2 )2 ] (5) and slightly strained [3]ruthenocenophane [Ru(η(5) -C5 H4 )2 (CH2 )3 ] (6) with cationic oxidants containing the non-coordinating [B(C6 F5 )4 ](-) anion was found to afford stable and isolable metalmetal bonded dicationic dimer salts [Ru(η(5) -C5 H4 )2 (CH2 )2 ]2 [B(C6 F5 )4 ]2 (8) and [Ru(η(5) -C5 H4 )2 (CH2 )3 ]2 [B(C6 F5 )4 ]2 (17), respectively. Cyclic voltammetry and DFT studies indicated that the oxidation potential, propensity for dimerization, and strength of the resulting RuRu bond is strongly dependent on the degree of tilt present in 5 and 6 and thereby degree of exposure of the Ru center. Cleavage of the RuRu bond in 8 was achieved through reaction with the radical source [(CH3 )2 NC(S)SSC(S)N(CH3 )2 ] (thiram), affording unusual dimer [(CH3 )2 NCS2 Ru(η(5) -C5 H4 )(η(3) -C5 H4 )C2 H4 ]2 [B(C6 F5 )4 ]2 (9) through a haptotropic η(5) -η(3) ring-slippage followed by an apparent [2+2] cyclodimerization of the cyclopentadienyl ligand. Analogs of possible intermediates in the reaction pathway [C6 H5 ERu(η(5) -C5 H4 )2 C2 H4 ][B(C6 F5 )4 ] [E=S (15) or Se (16)] were synthesized through reaction of 8 with C6 H5 EEC6 H5 (E=S or Se).

5.
J Am Chem Soc ; 135(8): 2939-42, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23384093

RESUMO

Electroactive organometallic molecules have been covalently attached to electrode surfaces through an ethynyl linkage. The process takes advantage of ethynyl-based radicals generated by anodic oxidation of a lithio-activated terminal ethynyl group. Electrophores containing redox-active ferrocene, cymantrene, or cobaltocenium moieties have been deposited at the one-to-three monolayer level. Both metal-based and ligand-based chemical reactions have been carried out on the surface-modified systems.

6.
J Org Chem ; 78(16): 8020-7, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23855600

RESUMO

The anodic oxidation of five diaryldisulfides have been studied in a dichloromethane/[NBu4][B(C6F5)4] electrolyte. Cyclic voltammetry scans of (p-RC6H4)2S2 (R = Me, 1a; R = F, 1b; R = OMe, 1c) show modest chemical reversibility for the 1(0/+) couple (E1/2 values vs ferrocene: 1.04 V for 1a, 1.21 V for 1b, 0.92 V for 1c), providing the first voltammetric evidence for the radical cation [Ar2S2](+). A dimer dication, [Ar4S4](2+), is proposed as an intermediate in the formation of the electrolysis product, the trisulfide [Ar3S3](+). The chemical reversibility of the one-electron oxidations of Ar2S2 vanishes in [PF6](-)-containing electrolytes. The radical cations of the more sterically constrained ortho-substituted analogues dimesityldisulfide (2a, E1/2 = 1.01 V) and bis(2,4,6-triisopropylphenyl)disulfide (2b, E1/2 = 0.98 V) show less tendency to dimerize. In all cases except 2b, the bulk electrolysis product is [R3S3](+), consistent with earlier literature reports. A mechanism is proposed in which the trisulfide is formed by reaction of the dimer dication [Ar4S4](2+) with neutral Ar2S2 to afford the trisulfide in a net 2/3 e(-) process. Oxidation of Ar2S2, either anodically or by a strong one-electron oxidant, in the presence of cyclohexene gives an efficient synthetic route to 1,2-substituted cyclohexyldisulfides.


Assuntos
Dissulfetos/química , Cátions/química , Eletrodos , Radicais Livres/química , Oxirredução
7.
Inorg Chem ; 52(17): 9875-84, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23937328

RESUMO

The divalent metal complexes M(II){(SC6H4-2-PR2)-κ(2)S,P}2 (3-7, and 9-11) (M = Zn, Sn, or Pb; R = (i)Pr, (t)Bu, or Ph), the Sn(IV) complexes Sn{(SC6H4-2-PR2)-κ(2)-S,P}Ph2Cl (12 and 13) (R = (i)Pr and (t)Bu), and the ionic Sn(IV) complexes [Sn{(SC6H4-2-PR2)-κ(2)-S,P}Ph2][BPh4] (14 and 15) (R = (i)Pr and (t)Bu) have been prepared and characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction when suitable crystals were afforded. The Sn(II) and Pb(II) complexes with R = Ph, (i)Pr, or (t)Bu (5, 6, 9, and 10) demonstrated ligand "folding" hinging on the P,S vector-a behavior driven by the repulsions of the metal/phosphorus and metal/sulfur lone pairs and increased M-S sigma bonding strength. This phenomenon was examined by density functional theory (DFT) calculations for the compounds in both folded and unfolded states. The Sn(IV) compound 13 (R = (t)Bu) crystallized with the phosphine in an axial position of the pseudotrigonal bipyramidal complex and also exhibited hemilability in the Sn-P dative bond, while compound 12 (R = (i)Pr), interestingly, crystallized with phosphine in an equatorial position and did not show hemilability. Finally, the crystal structure of 15 (R = (t)Bu) revealed the presence of an uncommon, 4-coordinate, stable Sn(IV) cation.

8.
Angew Chem Int Ed Engl ; 52(49): 12897-900, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24127205

RESUMO

One with the surface: A method is presented for electrode modification with terminal alkynes and alkenes. Direct oxidation of these moieties leads to efficient grafting onto glassy carbon, gold, platinum, and indium tin oxide surfaces. Various ferrocenes and 5,10,15,20-(4-ethynylphenyl)porphyrin were attached in this way.

9.
Chemistry ; 18(26): 8000-3, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22639440

RESUMO

Feeling the strain: The first example of metal-metal bonding between strained [n]metallocenophanes is reported. A dicarba[2]ruthenocenophanium dimer has been synthesised through the oxidation of a dicarba[2]ruthenocenophane (see figure). The structural and electrochemical characterisation of the dimer is also discussed.

10.
Acc Chem Res ; 43(7): 1030-9, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20345126

RESUMO

Electrochemistry is a powerful tool for the study of oxidative electron-transfer reactions (anodic processes). Since the 1960s, the electrolytes of choice for nonaqueous electrochemistry were relatively small (heptaatomic or smaller) inorganic anions, such as perchlorate, tetrafluoroborate, or hexafluorophosphate. Owing to the similar size-to-charge ratios of these "traditional" anions, structural alterations of the electrolyte anion are not particularly valuable in effecting changes in the corresponding redox reactions. Systematic variations of supporting electrolytes were largely restricted to cathodic processes, in which interactions of anions produced in the reactions are altered by changes in electrolyte cations. A typical ladder involves going from a weakly ion-pairing tetraalkylammonium cation, [N(C(n)H(2n+1))(4)](+), with n > or = 4, to more strongly ion-pairing counterparts with n < 4, and culminating in very strongly ion-pairing alkali metal ions. A new generation of supporting electrolyte salts that incorporate a weakly coordinating anion (WCA) expands anodic applications by providing a dramatically different medium in which to generate positively charged electrolysis products. A chain of electrolyte anions is now available for the control of anodic reactions, beginning with weakly ion-pairing WCAs, progressing through the traditional anions, and culminating in halide ions. Although the electrochemical properties of a number of different WCAs have been reported, the most systematic work involves fluoro- or trifluoromethyl-substituted tetraphenylborate anions (fluoroarylborate anions). In this Account, we focus on tetrakis(perfluorophenyl)borate, [B(C(6)F(5))(4)](-), which has a significantly more positive anodic window than tetrakis[(3,5-bis(trifluoromethyl)phenyl)]borate, [BArF(24)](-), making it suitable in a larger range of anodic oxidations. These WCAs also have a characteristic of specific importance to organometallic redox processes. Many electron-deficient organometallic compounds are subject to nucleophilic attack by the traditional family of electrolyte anions. With a view to testing the scope of the much less nucleophililic WCAs in providing a benign electrolyte anion for the generation of organometallic cation radicals, we carried out a series of studies on transition metal sandwich and half-sandwich compounds. The model compounds were chosen both for their fundamental importance and because their radical cations had been neither isolated nor spectrally characterized, despite many previous electrochemical investigations with traditional anions. The oxidation of prototypical organometallic compounds, such as the sandwich-structured ruthenocene and the piano-stool structured Cr(eta(6)-C(6)H(6))(CO)(3), Mn(eta(5)-C(5)H(5))(CO)(3), Re(eta(5)-C(5)H(5))(CO)(3), and Co(eta(5)-C(5)H(5))(CO)(2), gave the first definitive in situ characterization of their radical cations. In several cases, the kinetic stabilization of the anodic products allowed the identification of dimers or unique dimer radicals having weak metal-metal bonds and provided new preparative options for organometallic systems. In terms of thermodynamic effects, the lower ion-pairing abilities of WCAs and their good solubility in a broad range of solvents, including those of lower polarity, permitted a systematic study that yielded an integrated model of how to use solvent-electrolyte combinations to manipulate the E(1/2) differences of compounds undergoing multiple electron-transfer reactions. Although the efficacy of WCA-based electrolytes in organometallic anodic chemistry is now established, WCAs might further expand applications of organic redox chemistry. Other WCAs, including those derived from carboranes and fluorinated alkoxyaluminates, merit additional studies.

11.
Langmuir ; 26(18): 15010-21, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20726537

RESUMO

Two organometallic complexes having cyclopentadienyldiazonium ligands have been isolated and characterized by spectroscopy, X-ray crystallography, and electrochemistry. Both CoCp(η(5)-C(5)H(4)N(2))(2+) (2(2+)) and Mn(CO)(3)(η(5)-C(5)H(4)N(2))(+) (3(+)) undergo facile cyclopentadienyldiazonium ligand-based one-electron reductions which liberate dinitrogen and result in strong binding of the cyclopentadienyl ligand to a glassy carbon surface, similar to the processes well established for organic aryldiazonium salts. The organometallic-modified electrodes are robust and have a thickness of approximately one monolayer (Γ = (2-4) × 10(-10) mol cm(-2)). Their voltammetric responses are as expected for a cobaltocenium-modified electrode, [CoCp(η(5)-C(5)H(4)-E)](+), where Cp = cyclopentadienyl and E = electrode, and a "cymantrene"-modified electrode Mn(CO)(3)(η(5)-C(5)H(4)-E). The cobaltocenium electrode has two cathodic surface waves. The first (E(1/2) = -1.34 V vs ferrocene) is highly reversible, whereas the second (E(pc) = -2.4 V) is not, consistent with the known behavior of cobaltocenium. The cymantrene-substituted electrode has a partially chemically reversible anodic wave at E(1/2) = 0.96 V, also consistent with the behavior of its Mn(CO)(3)Cp parent. Many of the properties of aryl-modified electrodes, such as "blockage" of the voltammetric responses of test analytes, are also seen for the organometallic-modified electrodes. Surface-based substitution of a carbonyl group by a phosphite ligand, P(OR)(3), R = Ph or Me, was observed when the cymantrene-modified electrode was anodically oxidized in the presence of a phosphite ligand. The successful grafting of organometallic moieties by direct bonding of a cyclopentadienyl ligand to electrode surfaces expands the chemical and electrochemical dimensions of diazonium-based modified electrodes.

12.
J Am Chem Soc ; 131(23): 7968-9, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19462973

RESUMO

An electrochemical process is described for the rapid and efficient conversion of unsubstituted cyclic olefins into cycloaddition products. When a potential of 1.25 V vs ferrocene was applied to a solution of cis-cyclooctene (COE) in dichloromethane/[NBu(4)][B(C(6)F(5))(4)] containing a catalytic amount (4 mol %) of ReCp(CO)(3), 1, the olefin was converted to a diastereomeric mixture of the C(8)-dimer tricyclohexadecane, with the major isomer having a cis-anti-cis geometry. Smaller cyclic olefins (C(5) to C(7)) also formed cycloaddition products. The cyclization reactions require the electrogeneration of 1(+) as an electron-transfer mediator which triggers the one-electron oxidation of the olefin in spite of the fact that the potentials of the latter lie at considerably higher values. The very low coulomb count required (ca. 0.1 F per olefin) for the conversion of olefin to product is consistent with a radical-chain mechanism. The electrochemical conversion of COE to cyclized products is complete in a few minutes, in contrast to the week-long photochemical processes previously needed for preparation of the same cycloaddition products.

13.
Inorg Chem ; 48(22): 10826-36, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-19894771

RESUMO

The one-electron reduction of [Au(mnt)(2)](2-) (mnt = [S(2)C(2)(CN)(2)](2-), maleonitriledithiolate), 1(2-), stands out in the rich redox chemistry of metal-mnt complexes as a chemically reversible but electrochemically irreversible process. Although the E(1/2) value of the primary redox reaction 1(2-)/1(3-) is only slightly medium dependent (ca. -1.36 V to -1.53 V vs FcH in several nonaqueous solvents and supporting electrolytes), its chemical reversibility is dramatically solvent dependent. A quasi-Nernstian process was observed only in tetrahydrofuran (THF) at low supporting electrolyte concentrations. Fast reversible follow-up reactions, ascribed to formation of solvento-complexes [Au(mnt)(2).Solv](3-), were observed through cyclic voltammetry (CV) studies in dichloromethane and acetonitrile. The specifically solvated trianion reverts to "unsolvated" 1(2-) when reoxidized, accounting for the overall chemical reversibility of the process. Owing to the fact that the ligands in 1(3-) are highly negatively charged, the strong specific solvation is likely to involve H-bonding interactions between the solvent and the sulfur atoms of the trianion. Ion-pairing interactions between 1(3-) and electrolyte cations were also shown to have a discernible effect on the 1(2-)/1(3-) couple in THF. The heterogeneous electron-transfer (ET) rate constant (k(s)) for this couple was sufficiently low (k(s) = approximately 10(-3) cm s(-1)) to suggest a square-planar to quasi-tetrahedral structural rearrangement being intrinsic to the 1(2-)/1(3-) ET process. The E(1/2) separation between the 1(-)/1(2-) and 1(2-)/1(3-) couples (ca. 220 mV) is much smaller than any of those previously reported for metal-mnt complexes. The behavior of the gold-mnt trianion is a rare example of a ligand-based solvento-complex, which contrasts with the well-known metal-based solvento-complexes that are commonly observed between electron-deficient complexes and strong donor solvents.

14.
Inorg Chem ; 48(5): 2156-65, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19235975

RESUMO

The electrochemical oxidation of ruthenocene, RuCp(2) (Cp = eta(5)-C(5)H(5)), 1, has been studied in dichloromethane using a supporting electrolyte containing either the [B(C(6)F(5))(4)](-) (TFAB) or the [B(C(6)H(3)(CF(3))(2))(4)](-) (BArF(24)) counteranion. A quasi-Nernstian process was observed in both cases, with E(1/2) values of 0.41 and 0.57 V vs FeCp(2) in the respective electrolyte media. The ruthenocenium ion 1(+) equilibrates with a metal-metal bonded dimer [Ru(2)Cp(4)](2+), 2(2+), that is increasingly preferred at low temperatures. Dimerization equilibrium constants determined by digital simulation of cyclic voltammetry (CV) curves were in the range of 10(2)-10(4) M(-1) at temperatures of 256 to 298 K. Near room temperature, and particularly when BArF(24) is the counteranion, the dinuclear species [Ru(2)Cp(2)(sigma:eta(5)-C(5)H(4))(2)] (2+), 3(2+), in which each metal is sigma-bonded to a cyclopentadienyl ring, was the preferred electrolytic oxidation product. Cathodic reduction of 3(2+) regenerated ruthenocene. The two dinuclear products, 2(2+) and 3(2+), were characterized by (1)H NMR spectroscopy on anodically electrolyzed solutions of 1 at low temperatures in CD(2)Cl(2)/[NBu(4)][BArF(24)]. The variable temperature NMR behavior of these solutions showed that 3(2+) and 2(2+) take part in a thermal equilibrium, the latter being dominant at the lowest temperatures. Ruthenocene hydride, [1-H](+), was also identified as being present in the electrolysis solutions. The oxidation of ruthenocene is shown to be an inherent one-electron process, giving a ruthenocenium ion which is highly susceptible to reactions that allow it to regain an 18-electron configuration. In a dry non-donor solvent, and in the absence of nucleophiles, this electronic configuration is attained by self-reactions involving formation of Ru-Ru or Ru-C bonds. The present data offer a mechanistic explanation for the previously described results on the chemical oxidation of osmocene (Droege, M.W.; Harman, W.D.; Taube, H. Inorg. Chem. 1987, 26, 1309) and are relevant to the manner in which sigma:eta(5)-C(5)H(4)-complexes of other second and third-row metals are formed.

15.
Inorg Chem ; 48(2): 446-54, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19053345

RESUMO

The new conjugated organometallic polymer (-spacer-C[triple bond]C-Pt(PBu3)2-C[triple bond]C-)n (3; spacer = para-bis(diphenyl(tetramethyl)quinone diimine) and the cyclic mononuclear model complex, spacer'-C[triple bond]C-Pt(PEt3)2-C[triple bond]C x CuCl (4; spacer' = ortho-diphenyl-2,3,5,6-tetramethyl-1,4-benzoquinone diimine) were synthesized from the 1:1 condensation of the corresponding diethynyl ligands (2-para and 2-ortho (para- and ortho-diethynyl-diphenyl-2,3,5,6-tetramethylquinone diimine), respectively), with the trans-Pt(PBu3)2Cl2 for polymer 3 and cis-Pt(PEt3)2Cl2 for 4. The materials were characterized by GPC, DSC, ATG, and electrochemistry for polymer 3, and by X-ray diffraction for 4. Polymer 3 exhibits a M(n) of 18500, M(w) of 25000 with a PD of 1.37. The trans-geometry about Pt in polymer 3 was confirmed by 31P NMR and IR/Raman spectroscopy. The cyclic voltammogram study on the model complex trans-Pt(PBu3)2(C[triple bond]CPh)2, spacer 1-para (Me3Si-C[triple bond]C-R-C[triple bond]C-SiMe3; R = para-diphenyl-2,3,5,6-tetramethyl-1,4-benzoquinone diimine) and polymer 3 demonstrated that polymer 3 in the presence of trifluoroacetic acid (TFA) exhibits a quasi reversible 2-electron reduction process centered at 0.48 V versus SCE corresponding to the reduction of the protonated quinone diimine unit into the corresponding diamine. The UV-vis spectra of the spacer 2-para (440 nm) and polymer 3 (502 nm) are characterized by red-shifted charge transfer (CT) absorptions (C6H4C[triple bond]C --> quinone diimine for 2-para; and (C6H4C[triple bond]C)2Pt --> quinone diimine for polymer 3). These assignments are corroborated by density-functional theory (DFT) and time-dependent density-functional theory (TDDFT) computations. Polymer 3 is not luminescent in the solid state or in solution at 77 K and 298 K.

16.
J Am Chem Soc ; 130(30): 9859-70, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18597460

RESUMO

The anodic one-electron oxidation of three members of the half-sandwich family of piano-stool compounds MnCp (gamma)(CO) 3, where Cp (gamma) is a generic cyclopentadienyl ligand, has been studied in a CH 2Cl 2/[NBu 4][TFAB] electrolyte (TFAB = [B(C6F5) 4] (-)). The long-sought 17 e (-) radical cation of the parent complex MnCp(CO) 3 (cymantrene, 1, E 1/2 = 0.92 V vs ferrocene) has been shown to be persistent in solutions that use weakly coordinating anions in place of more nucleophilic traditional electrolyte anions. Spectroscopically characterized for the first time, 1 (+) was shown to absorb in the visible (530 nm), near-IR (2066 nm), and IR (2118, 1934 cm (-1)) regions. It was ESR-active at low temperatures (g parallel = 2.213, g perpendicular = 2.079, A parallel (Mn) = 79.2 G, A perpendicular (Mn) = 50 G) and NMR active at room temperature (delta = 22.4 vs TMS). The radical cations of the Cp-functionalized analogues, Mn(eta (5)-C5H 4NH2)(CO) 3, 2, E 1/2 = 0.62 V, and MnCp*(CO) 3 (Cp*= eta (5)-C 5Me 5, 3), E 1/2 = 0.64 V, were generated electrochemically as well by the chemical oxidant [ReCp(CO) 3] (+). The structures of 2 (+) and 3 (+) were determined by X-ray crystallographic studies of their TFAB salts. Compared to the structures of the corresponding neutral compounds, the cations showed elongated Mn-C(O) bonds and shortened C-O bonds, displaying the effect of diminished metal-to-CO backbonding. The bond-length changes in the Mn(CO) 3 moiety were much larger in 3 (+) (avg changes, Mn-C(O) = + 0.142 A, C-O = -0.063 A) than in 2 (+) (avg changes, Mn-C(O) = + 0.006 A, C-O = -0.003 A). Although there were only minor changes in the metal-to-center ring distances upon oxidation of either 2 or 3, there was decidedly less bending of the C(N) atom out of the cyclopentadienyl plane in 2 (+) compared to 2. The optical, vibrational, and magnetic resonance spectra of radicals 2 (+) and 3 (+) were also observed. The spectral data argue for the SOMOs of the 17-electron species being largely located on the Mn(CO) 3 moiety, having 40-50% Mn d-orbital character, with the ground states of the radicals, most likely (2)A'', lying close in energy (within about 6000 cm (-1)) to excited states that are responsible for their rapid electronic relaxations. The cymantrenyl moiety is proposed as an anodic redox tag (or label) having physical and chemical properties that are significantly different from those of its ferrocenyl analogue.

17.
J Am Chem Soc ; 130(8): 2692-703, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18247617

RESUMO

The anodic electrochemical oxidations of ReCp(CO)3 (1, Cp = eta(5)-C5H5), Re(eta(5)-C5H4NH2)(CO)3 (2), and ReCp*(CO)3 (3, Cp* = eta(5)-C5Me5), have been studied in CH2Cl2 containing [NBu4][TFAB] (TFAB = [B(C6F5)4]-) as supporting electrolyte. One-electron oxidations were observed with E(1/2) = 1.16, 0.79, and 0.91 V vs ferrocene for 1-3, respectively. In each case, rapid dimerization of the radical cation gave the dimer dication, [Re2Cp(gamma)2(CO)6]2+ (where Cp(gamma) represents a generic cyclopentadienyl ligand), which may be itself reduced cathodically back to the original 18-electron neutral complex ReCp(gamma)(CO)3. DFT calculations show that the SOMO of 1+ is highly Re-based and hybridized to point away from the metal, thereby facilitating the dimerization process and other reactions of the Re(II) center. The dimers, isolated in all three cases, have long metal-metal bonds that are unsupported by bridging ligands, the bond lengths being calculated as 3.229 A for [Re2Cp2(CO)6]2+ (1(2)2+) and measured as 3.1097 A for [Re2(C5H4NH2)2(CO)6]2+ (2(2)2+) by X-ray crystallography on [Re2(C5H4NH2)2(CO)6][TFAB]2. The monomer/dimer equilibrium constants are between K(dim) = 10(5) M(-1) and 10(7) M(-1) for these systems, so that partial dissociation of the dimers gives a modest amount of the corresponding monomer that is free to undergo radical cation reactions. The radical 1+ slowly abstracts a chlorine atom from dichloromethane to give the 18-electron complex [ReCp(CO)3Cl]+ as a side product. The radical cation 1+ acts as a powerful one-electron oxidant capable of effectively driving outer-sphere electron-transfer reactions with reagents having potentials of up to 0.9 V vs ferrocene.


Assuntos
Elétrons , Compostos Organometálicos/química , Rênio/química , Dimerização , Eletroquímica , Eletrólitos/química , Ligantes , Modelos Químicos , Oxirredução
18.
Chem Commun (Camb) ; 52(8): 1685-8, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26660087

RESUMO

Two new Zn(II) complexes have been prepared and evaluated for their capacity to activate and reduce CO2. The electrochemical properties of dichlorobis[diphenyl-(2-pyridyl)phosphine-κ(1)-N]zinc(II) [corrected]. and dichloro[diphenyl-(2-pyridyl)phosphine-κ(1)-N]zinc(II) 2 are compared using cyclic voltammetry. Electrochemical results indicate that 2 leads to a facilitated CO2 reduction to evolve CO at a glassy carbon electrode.

19.
Chem Commun (Camb) ; 51(87): 15804-7, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26365304

RESUMO

Reaction of [κ2-PR2C(SiMe3)Py]2Zn (R = Ph, 2a; iPr, 2b) with CO2 affords the products of formal insertion at the C­Si bond, [κ2-PR2CC(O)O(SiMe3)Py]2Zn (R = Ph, 3a; iPr, 3b). Insertion product 3b was structurally characterized. The reaction appears to be a stepwise insertion and rearrangement of CO2 based on kinetic data.

20.
Chem Commun (Camb) ; 50(73): 10626-9, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25073609

RESUMO

An electron-transfer series of octahedral α-diimine complexes [((H)L(Cy))3Cr](n+)(BARF)n (n = 2, 1, 0) has been synthesized and crystallographically characterized. Cyclic voltammetry indicated additional formation of [((H)L(Cy))3Cr](3+). The molecular structures suggested that all redox processes were ligand-based. Magnetic moments were consistent with spin ground states of S = 0 for [(H)L(Cy)3Cr](0), S = 1/2 for [(H)L(Cy)3Cr](+1), and S = 1 for [(H)L(Cy)3Cr](+2). The experimental data is consistent with chromium maintaining the +III oxidation state throughout, while being coordinated by varying numbers of neutral diimines ((H)L(Cy)) and diimine radical anions ((H)L(Cy)˙(-)).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa