RESUMO
Early events of the retroviral life cycle are the targets of many host restriction factors that have evolved to prevent establishment of infection. Incoming retroviral DNAs are transcriptionally silenced before integration in most cell types, and efficient viral gene expression occurs only after formation of the provirus. The molecular machinery for silencing unintegrated retroviral DNAs of HIV-1 remains poorly characterized. Here, we identified the histone chaperones CHAF1A and CHAF1B as essential factors for silencing of unintegrated HIV-1 DNAs. Using RNAi-mediated knockdown (KD) of multiple histone chaperones, we found that KD of CHAF1A or CHAF1B resulted in a pronounced increase in expression of incoming viral DNAs. The function of these two proteins in silencing was independent of their interaction partner RBBP4. Viral DNA levels accumulated to significantly higher levels in CHAF1A KD cells over controls, suggesting enhanced stabilization of actively transcribed DNAs. Chromatin immunoprecipitation assays revealed no major changes in histone loading onto viral DNAs in the absence of CHAF1A, but levels of the H3K9 trimethylation silencing mark were reduced. KD of the H3K9me3-binding protein HP1γ accelerated the expression of unintegrated HIV-1 DNAs. While CHAF1A was critical for silencing HIV-1 DNAs, it showed no role in silencing of unintegrated retroviral DNAs of mouse leukemia virus. Our study identifies CHAF1A and CHAF1B as factors involved specifically in silencing of HIV-1 DNAs early in infection. The results suggest that these factors act by noncanonical pathways, distinct from their histone loading activities, to mediate silencing of newly synthesized HIV-1 DNAs.
Assuntos
Fator 1 de Modelagem da Cromatina/metabolismo , DNA Viral , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Provírus/genética , Integração Viral , Regulação Viral da Expressão Gênica , Inativação Gênica , HIV-1/genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Transcrição Gênica , Proteína 28 com Motivo Tripartido/metabolismoRESUMO
Mammalian cells mount a variety of defense mechanisms against invading viruses to prevent or reduce infection. One such defense is the transcriptional silencing of incoming viral DNA, including the silencing of unintegrated retroviral DNA in most cells. Here, we report that the lymphoid cell lines K562 and Jurkat cells reveal a dramatically higher efficiency of silencing of viral expression from unintegrated HIV-1 DNAs as compared to HeLa cells. We found K562 cells in particular to exhibit an extreme silencing phenotype. Infection of K562 cells with a non-integrating viral vector encoding a green fluorescent protein reporter resulted in a striking decrease in the number of fluorescence-positive cells and in their mean fluorescence intensity as compared to integration-competent controls, even though the levels of viral DNA in the nucleus were equal or in the case of 2-LTR circles even higher. The silencing in K562 cells was functionally distinctive. Histones loaded on unintegrated HIV-1 DNA in K562 cells revealed high levels of the silencing mark H3K9 trimethylation and low levels of the active mark H3 acetylation, as detected in HeLa cells. But infection of K562 cells resulted in low H3K27 trimethylation levels on unintegrated viral DNA as compared to higher levels in HeLa cells, corresponding to low H3K27 trimethylation levels of silent host globin genes in K562 cells as compared to HeLa cells. Most surprisingly, treatment with the HDAC inhibitor trichostatin A, which led to a highly efficient relief of silencing in HeLa cells, only weakly relieved silencing in K562 cells. In summary, we found that the capacity for silencing viral DNAs differs between cell lines in its extent, and likely in its mechanism.
Assuntos
HIV-1 , Animais , DNA Viral/genética , DNA Viral/metabolismo , HIV-1/fisiologia , Células HeLa , Humanos , Linfócitos/metabolismo , Mamíferos , Integração ViralRESUMO
Upon delivery into the nucleus of the host cell, linear double-stranded retroviral DNAs are either integrated into the host genome to form the provirus or act as a target of the DNA damage response and become circularized. Little is known about the chromatinization status of the unintegrated retroviral DNAs of the human immunodeficiency virus type 1 (HIV-1). In this study, we used chromatin immunoprecipitation to investigate the nature of unintegrated HIV-1 DNAs and discovered that core histones, the histone variant H3.3, and H1 linker histones are all deposited onto extrachromosomal HIV-1 DNA. We performed a time-course analysis and determined that the loading of core and linker histones occurred early after virus application. H3.3 and H1 linker histones were also found to be loaded onto unintegrated DNAs of the Moloney murine leukemia virus. The unintegrated retroviral DNAs are potently silenced, and we provide evidence that the suppression of extrachromosomal HIV-1 DNA is histone-related. Unintegrated DNAs were marked by posttranslational histone modifications characteristic of transcriptionally inactive genes: high levels of H3K9 trimethylation and low levels of H3 acetylation. These findings reveal insights into the nature of unintegrated retroviral DNAs.
Assuntos
DNA Viral/genética , Inativação Gênica , HIV-1/genética , Histonas/metabolismo , Transcrição Gênica , Metilação de DNA , Células HeLa , HumanosRESUMO
The authors wish to apologize for an error within the scale bar of the microarray heatmap in Additional File 5 of the supplementary information. Two values were incorrectly displayed on the scale bar (11 instead of 10 and 13 instead of 12).
RESUMO
BACKGROUND: Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. RESULTS: In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. CONCLUSIONS: We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC.
Assuntos
Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/virologia , Lentivirus/genética , Animais , Proteínas do Capsídeo/genética , Proteínas de Transporte/genética , Linhagem Celular , Ciclofilina A/metabolismo , Ciclosporina/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lentivirus/fisiologia , Leupeptinas/farmacologia , Camundongos , Transcrição Reversa/efeitos dos fármacos , Transdução Genética , Integração Viral/efeitos dos fármacos , Internalização do VírusRESUMO
Mammalian cells have developed and optimized defense mechanisms to prevent or hamper viral infection. The early transcriptional silencing of incoming viral DNAs is one such antiviral strategy and seems to be of fundamental importance, since most cell types silence unintegrated retroviral DNAs. In this chapter, a method for chromatin immunoprecipitation of unintegrated DNA is described. This technique allows investigators to examine histone and co-factor interactions with unintegrated viral DNAs as well as to analyze histone modifications in general or in a kinetic fashion at various time points during viral infection.
Assuntos
Imunoprecipitação da Cromatina , Genoma Viral , Histonas , Retroviridae , Histonas/metabolismo , Humanos , Imunoprecipitação da Cromatina/métodos , Retroviridae/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/imunologia , Animais , DNA Viral/genética , Anticorpos/imunologiaRESUMO
Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.
Assuntos
Retrovirus Endógenos/genética , Regulação da Expressão Gênica , Inativação Gênica , Interações entre Hospedeiro e Microrganismos/genética , Transcrição Gênica , Animais , Montagem e Desmontagem da Cromatina , Metilação de DNA , Humanos , Camundongos , Infecções por RetroviridaeRESUMO
The recently discovered CRISPR/Cas9 system is widely used in basic research and is a useful tool for disease modeling and gene editing therapies. However, long-term expression of DNA-modifying enzymes can be associated with cytotoxicity and is particularly unwanted in clinical gene editing strategies. Because current transient expression methods may still suffer from cytotoxicity and/or low efficiency, we developed non-integrating retrovirus-based CRISPR/Cas9 all-in-one particles for targeted gene knockout. By redirecting the gammaretroviral packaging machinery, we transiently delivered Streptococcus pyogenes Cas9 (SpCas9) mRNA and single-guide RNA transcripts into various (including primary) cell types. Spatiotemporal co-delivery of CRISPR/Cas9 components resulted in efficient disruption of a surrogate reporter gene, as well as functional knockout of endogenous human genes CXCR4 and TP53. Although acting in a hit-and-run fashion, knockout efficiencies of our transient particles corresponded to 52%-80% of those obtained from constitutively active integrating vectors. Stable SpCas9 overexpression at high doses in murine NIH3T3 cells caused a substantial G0/G1 arrest accompanied by reduced cell growth and metabolic activity, which was prevented by transient SpCas9 transfer. In summary, the non-integrating retrovirus-based vector particles introduced here allow efficient and dose-controlled delivery of CRISPR/Cas9 components into target cells.