Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30918073

RESUMO

In this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676-8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitro replication, oncolytic activities in vitro and in vivo, and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCE The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.


Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Vaccinia virus/metabolismo , Animais , Antígenos CD/metabolismo , Antígeno B7-1/genética , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Antígenos CD28/metabolismo , Antígeno CTLA-4/metabolismo , Moléculas de Adesão Celular , Linhagem Celular , Embrião de Galinha , Humanos , Imunoconjugados , Interleucina-2/metabolismo , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Vacínia/genética , Vacínia/metabolismo , Vaccinia virus/genética , Proteínas Virais/metabolismo
2.
Gut ; 64(12): 1961-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25429051

RESUMO

OBJECTIVE: To assess a new adenovirus-based immunotherapy as a novel treatment approach to chronic hepatitis B (CHB). METHODS: TG1050 is a non-replicative adenovirus serotype 5 encoding a unique large fusion protein composed of a truncated HBV Core, a modified HBV Polymerase and two HBV Envelope domains. We used a recently described HBV-persistent mouse model based on a recombinant adenovirus-associated virus encoding an over length genome of HBV that induces the chronic production of HBsAg, HBeAg and infectious HBV particles to assess the ability of TG1050 to induce functional T cells in face of a chronic status. RESULTS: In in vitro studies, TG1050 was shown to express the expected large polyprotein together with a dominant, smaller by-product. Following a single administration in mice, TG1050 induced robust, multispecific and long-lasting HBV-specific T cells detectable up to 1 year post-injection. These cells target all three encoded immunogens and display bifunctionality (i.e., capacity to produce both interferon γ and tumour necrosis factor α as well as cytolytic functions). In addition, control of circulating levels of HBV DNA and HBsAg was observed while alanine aminotransferase levels remain in the normal range. CONCLUSIONS: Injection of TG1050 induced both splenic and intrahepatic functional T cells producing cytokines and displaying cytolytic activity in HBV-naïve and HBV-persistent mouse models together with significant reduction of circulating viral parameters. These results warrant clinical evaluation of TG1050 in the treatment of CHB.


Assuntos
Adenoviridae/metabolismo , Linfócitos T CD8-Positivos/metabolismo , DNA Viral/sangue , Vírus da Hepatite B/imunologia , Hepatite B Crônica/terapia , Imunoterapia/métodos , Proteínas Virais de Fusão/imunologia , Adenoviridae/classificação , Alanina Transaminase/sangue , Animais , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/imunologia , Modelos Animais de Doenças , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Vetores Genéticos , Antígeno HLA-A2/genética , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/sangue , Hepatite B Crônica/sangue , Interferon gama/sangue , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue , Proteínas Virais de Fusão/genética , Carga Viral
3.
J Virol ; 88(10): 5242-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574403

RESUMO

UNLABELLED: To identify novel stimulators of the innate immune system, we constructed a panel of eight HEK293 cell lines double positive for human Toll-like receptors (TLRs) and an NF-κB-inducible reporter gene. Screening of a large variety of compounds and cellular extracts detected a TLR3-activating compound in a microsomal yeast extract. Fractionation of this extract identified an RNA molecule of 4.6 kb, named nucleic acid band 2 (NAB2), that was sufficient to confer the activation of TLR3. Digests with single- and double-strand-specific RNases showed the double-strand nature of this RNA, and its sequence was found to be identical to that of the genome of the double-stranded RNA (dsRNA) L-BC virus of Saccharomyces cerevisiae. A large-scale process of production and purification of this RNA was established on the basis of chemical cell lysis and dsRNA-specific chromatography. NAB2 complexed with the cationic lipid Lipofectin but neither NAB2 nor Lipofectin alone induced the secretion of interleukin-12(p70) [IL-12(p70)], alpha interferon, gamma interferon-induced protein 10, macrophage inflammatory protein 1ß, or IL-6 in human monocyte-derived dendritic cells. While NAB2 activated TLR3, Lipofectin-stabilized NAB2 also signaled via the cytoplasmic sensor for RNA recognition MDA-5. A significant increase of RMA-MUC1 tumor rejection and survival was observed in C57BL/6 mice after prophylactic vaccination with MUC1-encoding modified vaccinia virus Ankara (MVA) and NAB2-Lipofectin. This combination of immunotherapies strongly increased at the injection sites the percentage of infiltrating natural killer (NK) cells and plasmacytoid dendritic cells (pDCs), cell types which can modulate innate and adaptive immune responses. IMPORTANCE: Virus-based cancer vaccines offer a good alternative to the treatment of cancer but could be improved. Starting from a screening approach, we have identified and characterized an unexplored biological molecule with immunomodulatory characteristics which augments the efficacy of an MVA-based immunotherapeutic agent. The immune modulator consists of the purified dsRNA genome isolated from a commercially used yeast strain, NAB2, mixed with a cationic lipid, Lipofectin. NAB2-Lipofectin stimulates the immune system via TLR3 and MDA-5. When it was injected at the MVA vaccination site, the immune modulator increased survival in a preclinical tumor model. We could demonstrate that NAB2-Lipofectin augments the MVA-induced infiltration of natural killer and plasmacytoid dendritic cells. We suggest indirect mechanisms of activation of these cell types by the influence of NAB2-Lipofectin on innate and adaptive immunity. Detailed analysis of cell migration at the vaccine injection site and the appropriate choice of an immune modulator should be considered to achieve the rational improvement of virus vector-based vaccination by immune modulators.


Assuntos
Células Dendríticas/imunologia , Fatores Imunológicos/imunologia , Neoplasias/terapia , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia , Saccharomyces cerevisiae/virologia , Receptor 3 Toll-Like/imunologia , Animais , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , RNA de Cadeia Dupla/isolamento & purificação , RNA de Cadeia Dupla/uso terapêutico , RNA Viral/isolamento & purificação , RNA Viral/uso terapêutico , Análise de Sobrevida
4.
Front Bioeng Biotechnol ; 11: 1247802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053848

RESUMO

Arming oncolytic viruses with transgenes encoding immunomodulators improves their therapeutic efficacy by enhancing and/or sustaining the innate and adaptive anti-tumoral immune responses. We report here the isolation, selection, and vectorization of a blocking anti-human PDL1 single-domain antibody (sdAb) isolated from PDL1-immunized alpacas. Several formats of this sdAb were vectorized into the vaccinia virus (VV) and evaluated for their programmed cell death protein 1 (PD1)/PD1 ligand (PDL1) blocking activity in the culture medium of tumor cells infected in vitro. In those conditions, VV-encoded homodimeric sdAb generated superior PDL1 blocking activity compared to a benchmark virus encoding full-length avelumab. The sdAb was further used to design simple, secreted, and small tumor necrosis factor superfamily (TNFSF) fusions with the ability to engage their cognate receptors (TNFRSF) only in the presence of PDL1-positive cells. Finally, PDL1-independent alternatives of TNFRSF agonists were also constructed by fusing different variants of surfactant protein-D (SP-D) oligomerization domains with TNFSF ectodomains. An optimal SP-D-CD40L fusion with an SP-D collagen domain reduced by 80% was identified by screening with a transfection/infection method where poxvirus transfer plasmids and vaccinia virus were successively introduced into the same cell. However, once vectorized in VV, this construct had a much lower CD40 agonist activity compared to the SP-D-CD40L construct, which is completely devoid of the collagen domain that was finally selected. This latest result highlights the importance of working with recombinant viruses early in the payload selection process. Altogether, these results bring several complementary solutions to arm oncolytic vectors with powerful immunomodulators to improve their immune-based anti-tumoral activity.

5.
J Biomed Biotechnol ; 2012: 878657, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22500109

RESUMO

AIM: To investigate the ability of recombinant modified vaccinia virus Ankara (rMVA) vector to induce an immune response against a well-tolerated self-antigen. METHODS: rMVA vectors expressing different form of α-fetoprotein (AFP) were produced and characterized. Naïve mice were vaccinated with MVA vectors expressing the AFP antigen in either a secreted, or a membrane-bound, or an intracellular form. The immune response was monitored by an IFNΓ ELISpot assay and antibody detection. RESULTS: Vaccination with the membrane-associated form of AFP induced a stronger CD8(+) T-cell response compared to the ones obtained with the MVA encoding the secreted or the intracellular forms of AFP. Moreover, the vaccination with the membrane-bound AFP elicited the production of AFP-specific antibodies. CONCLUSIONS: The AFP transmembrane form is more immunogenic. Expressing a membrane-bound form in the context of an MVA vaccination could enhance the immunogenicity of a self-antigen.


Assuntos
Proteínas Recombinantes de Fusão/imunologia , alfa-Fetoproteínas/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Embrião de Galinha , ELISPOT , Interferon gama/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estatísticas não Paramétricas , Vaccinia virus/genética , Vaccinia virus/imunologia , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo
6.
Viral Immunol ; 20(4): 664-71, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18158739

RESUMO

Recombinant vaccinia virus with tumor cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory or toxic molecules. We report the expression of a tumor-specific single-chain antibody on the surface of intracellular mature vaccinia virus particles (IMV). The wild-type p14 externally membrane-associated protein p14 (A27L gene), which is not required for viral binding and replication, was replaced by p14 fusion molecules carrying a single-chain antibody directed against the tumor-associated antigen MUC-1. MUC-1 mucin is an epithelial cell antigen whose aberrant expression plays a role in autoimmunity and tumor immunity in the majority of human carcinomas and multiple myeloma. Fusion protein carrying the single-chain antibody at the NH2-terminal position was expressed and exposed at the envelope of the corresponding recombinant virus. The construct containing the antibody was able to bind a MUC-1 specific 60mer peptide. Moreover, targeted virus infects MUC-1-expressing cells in vitro more efficiently.


Assuntos
Anticorpos Antivirais/imunologia , Neoplasias/terapia , Vaccinia virus/genética , Vaccinia virus/imunologia , Animais , Anticorpos Antivirais/uso terapêutico , Antígenos de Neoplasias/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular Tumoral , Vetores Genéticos , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Proteínas de Membrana , Camundongos , Mucinas/imunologia , Neoplasias/genética , Neoplasias/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Vacínia/virologia , Vaccinia virus/crescimento & desenvolvimento , Vaccinia virus/isolamento & purificação , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
7.
Oncoimmunology ; 5(10): e1220467, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853644

RESUMO

We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro. Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8+ and CD4+). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.

8.
Cancer Gene Ther ; 9(5): 470-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11961670

RESUMO

Immune responses to tumor-associated antigens are often dampened by a tumor-induced state of immune anergy. Previous work has attempted to overcome tumor-induced T-cell anergy by the direct injection of vectors carrying the genes encoding one of a variety of cytokines. We hypothesised that the polyclonal stimulation of T cells, preferably through the TCR complex, would result in a cascade of cytokines associated with T-cell activation and would be best able to overcome T-cell anergy. Here we use the highly attenuated MVA poxvirus to express on tumor cells, in vitro and in vivo, either of three membrane-bound monoclonal antibodies specific for murine TCR complex. Using this system, we have expressed antibodies specific for the CD3 epsilon chain (KT3), TCR alpha/beta complex (H57-597), and V beta 7 chain (TR310). Tumor cells bristling with these antibodies are capable of inducing murine T-cell proliferation and cytokine production. When injected into growing tumors (P815, RenCa, and B16F10), these constructs induce the activation of immune effector cells and result in the rejection of the tumor. Histological and FACS analysis of tumor-infiltrating leukocytes reveal that the injection of recombinant virus-expressing antibodies specific for the TCR complex attracts and activates (CD25(+), CD69(+)) CD4 and CD8 lymphocytes. This approach represents a novel strategy to overcome T-cell anergy in tumors and allow the stimulation of tumor-specific T cells.


Assuntos
Terapia Genética/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Western Blotting , Complexo CD3/genética , Divisão Celular , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Poxviridae/genética , Ligação Proteica , Ratos , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas
9.
MAbs ; 6(2): 533-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492308

RESUMO

The humanized monoclonal antibody H27K15 specifically targets human CD115, a type III tyrosine kinase receptor involved in multiple cancers and inflammatory diseases. Binding of H27K15 to hCD115 expressing cells inhibits the functional effect of colony-stimulating factor-1 (CSF-1), in a non-competitive manner. Both homology modeling and docking programs were used here to model the human CD115 extracellular domains, the H27K15 variable region and their interaction. The resulting predicted H27K15 epitope includes mainly the D1 domain in the N-terminal extracellular region of CD115 and some residues of the D2 domain. Sequence alignment with the non-binding murine CD115, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy and affinity measurements by quartz crystal microbalance revealed critical residues of this epitope that are essential for H27K15 binding. A combination of computational simulations and biochemical experiments led to the design of a chimeric CD115 carrying the human epitope of H27K15 in a murine CD115 backbone that is able to bind both H27K15 as well as the murine ligands CSF-1 and IL-34. These results provide new possibilities to minutely study the functional effects of H27K15 in a transgenic mouse that would express this chimeric molecule.


Assuntos
Anticorpos Monoclonais/metabolismo , Interleucinas/imunologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Biologia Computacional , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Humanos , Região Variável de Imunoglobulina/química , Fator Estimulador de Colônias de Macrófagos/imunologia , Camundongos , Modelos Químicos , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Alinhamento de Sequência
10.
MAbs ; 5(5): 736-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23924795

RESUMO

Cancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy. Anti-human CD115 monoclonal antibodies (mAbs) that inhibit the receptor function have been generated in a number of laboratories. These mAbs compete with CSF-1 binding to CD115, dramatically affecting monocyte survival and preventing osteoclast and macrophage differentiation, but they also block CD115/CSF-1 internalization and degradation, which could lead to potent rebound CSF-1 effects in patients after mAb treatment has ended. We thus generated and selected a non-ligand competitive anti-CD115 mAb that exerts only partial inhibitory effects on CD115 signaling without blocking the internalization or the degradation of the CD115/CSF-1 complex. This mAb, H27K15, affects monocyte survival only minimally, but downregulates osteoclast differentiation and activity. Importantly, it inhibits monocyte differentiation to CD163(+)CD64(+) M2-polarized suppressor macrophages, skewing their differentiation toward CD14(-)CD1a(+) dendritic cells (DCs). In line with this observation, H27K15 also drastically inhibits monocyte chemotactic protein-1 secretion and reduces interleukin-6 production; these two molecules are known to be involved in M2-macrophage recruitment. Thus, the non-depleting mAb H27K15 is a promising anti-tumor candidate, able to inhibit osteoclast differentiation, likely decreasing metastasis-induced osteolysis, and able to prevent M2 polarization of TAMs while inducing DCs, hence contributing to the creation of more efficient anti-tumor immune responses.


Assuntos
Anticorpos Monoclonais/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Osteólise/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Células HL-60 , Humanos , Interleucina-6/imunologia , Interleucina-6/metabolismo , Fator Estimulador de Colônias de Macrófagos/imunologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/imunologia , Monócitos/metabolismo , Células NIH 3T3 , Osteoclastos/efeitos dos fármacos , Osteoclastos/imunologia , Osteoclastos/metabolismo , Osteólise/imunologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa