Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Immunity ; 55(5): 847-861.e10, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545033

RESUMO

The microbiota are vital for immune homeostasis and provide a competitive barrier to bacterial and fungal pathogens. Here, we investigated how gut commensals modulate systemic immunity and response to viral infection. Antibiotic suppression of the gut microbiota reduced systemic tonic type I interferon (IFN-I) and antiviral priming. The microbiota-driven tonic IFN-I-response was dependent on cGAS-STING but not on TLR signaling or direct host-bacteria interactions. Instead, membrane vesicles (MVs) from extracellular bacteria activated the cGAS-STING-IFN-I axis by delivering bacterial DNA into distal host cells. DNA-containing MVs from the gut microbiota were found in circulation and promoted the clearance of both DNA (herpes simplex virus type 1) and RNA (vesicular stomatitis virus) viruses in a cGAS-dependent manner. In summary, this study establishes an important role for the microbiota in peripheral cGAS-STING activation, which promotes host resistance to systemic viral infections. Moreover, it uncovers an underappreciated risk of antibiotic use during viral infections.


Assuntos
Microbioma Gastrointestinal , Herpesvirus Humano 1 , Interferon Tipo I , Viroses , Antibacterianos , Antivirais , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Nucleotidiltransferases/genética
2.
Mol Cell ; 83(20): 3582-3587, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37863025

RESUMO

In recent years, increasing evidence has highlighted the profound connection between DNA damage repair and the activation of immune responses. We spoke with researchers about their mechanistic interplays and the implications for cancer and other diseases.


Assuntos
Dano ao DNA , Reparo do DNA , Transdução de Sinais , Imunidade
3.
Immunity ; 45(1): 106-18, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27421701

RESUMO

The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1ß (IL-1ß) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection.


Assuntos
Ataxia Telangiectasia/genética , Pulmão/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células Cultivadas , Dano ao DNA , Reparo do DNA , Humanos , Imunidade Inata , Inflamassomos/fisiologia , Interleucina-1beta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
4.
Immunity ; 43(4): 647-59, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26474655

RESUMO

Pattern-recognition receptors (PRRs) including Toll-like receptors, RIG-I-like receptors, and cytoplasmic DNA receptors are essential for protection against pathogens but require tight control to avert inflammatory diseases. The mechanisms underlying this strict regulation are unclear. MYSM1 was previously described as a key component of epigenetic signaling machinery. We found that in response to microbial stimuli, MYSM1 accumulated in the cytoplasm where it interacted with and inactivated TRAF3 and TRAF6 complexes to terminate PRR pathways for pro-inflammatory and type I interferon responses. Consequently, Mysm1 deficiency in mice resulted in hyper-inflammation and enhanced viral clearance but also susceptibility to septic shock. We identified two motifs in MYSM1 that were essential for innate immune suppression: the SWIRM domain that interacted with TRAF3 and TRAF6 and the metalloproteinase domain that removed K63 polyubiquitins. This study identifies MYSM1 as a key negative regulator of the innate immune system that guards against an overzealous self-destructive immune response.


Assuntos
Endopeptidases/imunologia , Imunidade Inata/imunologia , Infecções/imunologia , Inflamação/imunologia , Fator 3 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Animais , Citoplasma/metabolismo , Suscetibilidade a Doenças , Endopeptidases/química , Endopeptidases/deficiência , Endopeptidases/genética , Regulação da Expressão Gênica/imunologia , Interferon Tipo I/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Camundongos , Camundongos Transgênicos , Modelos Imunológicos , Complexo de Endopeptidases do Proteassoma , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteólise , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Reconhecimento de Padrão/imunologia , Choque Séptico/imunologia , Fator 3 Associado a Receptor de TNF/química , Fator 6 Associado a Receptor de TNF/química , Transativadores , Transfecção , Proteases Específicas de Ubiquitina , Ubiquitinação , Estomatite Vesicular/imunologia , Vesiculovirus/imunologia
5.
Immunity ; 42(2): 332-343, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692705

RESUMO

Dysfunction in Ataxia-telangiectasia mutated (ATM), a central component of the DNA repair machinery, results in Ataxia Telangiectasia (AT), a cancer-prone disease with a variety of inflammatory manifestations. By analyzing AT patient samples and Atm(-/-) mice, we found that unrepaired DNA lesions induce type I interferons (IFNs), resulting in enhanced anti-viral and anti-bacterial responses in Atm(-/-) mice. Priming of the type I interferon system by DNA damage involved release of DNA into the cytoplasm where it activated the cytosolic DNA sensing STING-mediated pathway, which in turn enhanced responses to innate stimuli by activating the expression of Toll-like receptors, RIG-I-like receptors, cytoplasmic DNA sensors, and their downstream signaling partners. This study provides a potential explanation for the inflammatory phenotype of AT patients and establishes damaged DNA as a cell intrinsic danger signal that primes the innate immune system for a rapid and amplified response to microbial and environmental threats.


Assuntos
Ataxia Telangiectasia/imunologia , Dano ao DNA , DNA/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Proteínas de Membrana/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Células da Medula Óssea/imunologia , Linhagem Celular , Citosol/imunologia , Citosol/microbiologia , Reparo do DNA/genética , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Imunidade Inata , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Interferon gama/biossíntese , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846244

RESUMO

The gut epithelium serves to maximize the surface for nutrient and fluid uptake, but at the same time must provide a tight barrier to pathogens and remove damaged intestinal epithelial cells (IECs) without jeopardizing barrier integrity. How the epithelium coordinates these tasks remains a question of significant interest. We used imaging and an optical flow analysis pipeline to study the dynamicity of untransformed murine and human intestinal epithelia, cultured atop flexible hydrogel supports. Infection with the pathogen Salmonella Typhimurium (STm) within minutes elicited focal contractions with inward movements of up to ∼1,000 IECs. Genetics approaches and chimeric epithelial monolayers revealed contractions to be triggered by the NAIP/NLRC4 inflammasome, which sensed type-III secretion system and flagellar ligands upon bacterial invasion, converting the local tissue into a contraction epicenter. Execution of the response required swift sublytic Gasdermin D pore formation, ion fluxes, and the propagation of a myosin contraction pulse across the tissue. Importantly, focal contractions preceded, and could be uncoupled from, the death and expulsion of infected IECs. In both two-dimensional monolayers and three-dimensional enteroids, multiple infection-elicited contractions coalesced to produce shrinkage of the epithelium as a whole. Monolayers deficient for Caspase-1(-11) or Gasdermin D failed to elicit focal contractions but were still capable of infected IEC death and expulsion. Strikingly, these monolayers lost their integrity to a markedly higher extent than wild-type counterparts. We propose that prompt NAIP/NLRC4/Caspase-1/Gasdermin D/myosin-dependent contractions allow the epithelium to densify its cell packing in infected regions, thereby preventing tissue disintegration due to the subsequent IEC death and expulsion process.


Assuntos
Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Proteína Inibidora de Apoptose Neuronal/metabolismo , Animais , Infecções Bacterianas/fisiopatologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Caspases/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , Inflamassomos , Mucosa Intestinal/microbiologia , Intestinos , Camundongos , Contração Muscular/fisiologia , Cultura Primária de Células , Receptores de Reconhecimento de Padrão/metabolismo , Salmonella typhimurium/patogenicidade , Sistemas de Secreção Tipo III/metabolismo
7.
EMBO J ; 38(21): e102718, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31544964

RESUMO

DNA repair via homologous recombination (HR) is indispensable for genome integrity and cell survival but if unrestrained can result in undesired chromosomal rearrangements. The regulatory mechanisms of HR are not fully understood. Cyclic GMP-AMP synthase (cGAS) is best known as a cytosolic innate immune sensor critical for the outcome of infections, inflammatory diseases, and cancer. Here, we report that cGAS is primarily a chromatin-bound protein that inhibits DNA repair by HR, thereby accelerating genome destabilization, micronucleus generation, and cell death under conditions of genomic stress. This function is independent of the canonical STING-dependent innate immune activation and is physiologically relevant for irradiation-induced depletion of bone marrow cells in mice. Mechanistically, we demonstrate that inhibition of HR repair by cGAS is linked to its ability to self-oligomerize, causing compaction of bound template dsDNA into a higher-ordered state less amenable to strand invasion by RAD51-coated ssDNA filaments. This previously unknown role of cGAS has implications for understanding its involvement in genome instability-associated disorders including cancer.


Assuntos
Morte Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Instabilidade Genômica , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/fisiologia , Reparo de DNA por Recombinação , Animais , Núcleo Celular/genética , Cromatina/genética , Dano ao DNA , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/genética , Transdução de Sinais
9.
PLoS Pathog ; 13(6): e1006383, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28570638

RESUMO

The innate immune system is a critical component of host defence against microbial pathogens, but effective responses require an ability to distinguish between infectious and non-infectious insult to prevent inappropriate inflammation. Using the important obligate intracellular human pathogen Chlamydia trachomatis; an organism that causes significant immunopathology, we sought to determine critical host and pathogen factors that contribute to the induction of inflammasome activation. We assayed inflammasome activation by immunoblotting and ELISA to detect IL-1ß processing and LDH release to determine pyroptosis. Using primary murine bone marrow derived macrophages or human monocyte derived dendritic cells, infected with live or attenuated Chlamydia trachomatis we report that the live organism activates both canonical and non-canonical inflammasomes, but only canonical inflammasomes controlled IL-1ß processing which preceded pyroptosis. NADPH oxidase deficient macrophages were permissive to Chlamydia trachomatis replication and displayed elevated type-1 interferon and inflammasome activation. Conversely, attenuated, non-replicating Chlamydia trachomatis, primed but did not activate inflammasomes and stimulated reduced type-1 interferon responses. This suggested bacterial replication or metabolism as important factors that determine interferon responses and inflammasome activation. We identified STING but not cGAS as a central mediator of interferon regulated inflammasome activation. Interestingly, exogenous delivery of a Chlamydia trachomatis metabolite and STING ligand-cyclic di-AMP, recovered inflammasome activation to attenuated bacteria in a STING dependent manner thus indicating that a bacterial metabolite is a key factor initiating inflammasome activation through STING, independent of cGAS. These data suggest a potential mechanism of how the innate immune system can distinguish between infectious and non-infectious insult and instigate appropriate immune responses that could be therapeutically targeted.


Assuntos
Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/fisiologia , Inflamassomos/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Animais , Chlamydia trachomatis/genética , Chlamydia trachomatis/imunologia , AMP Cíclico/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Feminino , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/microbiologia , Masculino , Proteínas de Membrana/genética , Camundongos , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia
10.
Cell Microbiol ; 19(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28745813

RESUMO

The success of pathogens depends on their ability to circumvent immune defences. Francisella tularensis is one of the most infectious bacteria known. The remarkable virulence of Francisella is believed to be due to its capacity to evade or subvert the immune system, but how remains obscure. Here, we show that Francisella triggers but concomitantly inhibits the Toll-like receptor, RIG-I-like receptor, and cytoplasmic DNA pathways. Francisella subverts these pathways at least in part by inhibiting K63-linked polyubiquitination and assembly of TRAF6 and TRAF3 complexes that control the transcriptional responses of pattern recognition receptors. We show that this mode of inhibition requires a functional type VI secretion system and/or the presence of live bacteria in the cytoplasm. The ability of Francisella to enter the cytosol while simultaneously inhibiting multiple pattern recognition receptor pathways may account for the notable capacity of this bacterium to invade and proliferate in the host without evoking a self-limiting innate immune response.


Assuntos
Francisella tularensis/imunologia , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Francisella tularensis/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Receptores de Reconhecimento de Padrão/antagonistas & inibidores , Tularemia/imunologia , Tularemia/microbiologia , Tularemia/patologia , Sistemas de Secreção Tipo VI/metabolismo , Ubiquitinação/imunologia
11.
J Neuroinflammation ; 13(1): 277, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27776548

RESUMO

BACKGROUND: Neurotropic flaviviruses such as tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and Zika virus (ZIKV) are causative agents of severe brain-related diseases including meningitis, encephalitis, and microcephaly. We have previously shown that local type I interferon response within the central nervous system (CNS) is involved in the protection of mice against tick-borne flavivirus infection. However, the cells responsible for mounting this protective response are not defined. METHODS: Primary astrocytes were isolated from wild-type (WT) and interferon alpha receptor knock out (IFNAR-/-) mice and infected with neurotropic flaviviruses. Viral replication and spread, IFN induction and response, and cellular viability were analyzed. Transcriptional levels in primary astrocytes treated with interferon or supernatant from virus-infected cells were analyzed by RNA sequencing and evaluated by different bioinformatics tools. RESULTS: Here, we show that astrocytes control viral replication of different TBEV strains, JEV, WNV, and ZIKV. In contrast to fibroblast, astrocytes mount a rapid interferon response and restrict viral spread. Furthermore, basal expression levels of key interferon-stimulated genes are high in astrocytes compared to mouse embryonic fibroblasts. Bioinformatic analysis of RNA-sequencing data reveals that astrocytes have established a basal antiviral state which contributes to the rapid viral recognition and upregulation of interferons. The most highly upregulated pathways in neighboring cells were linked to type I interferon response and innate immunity. The restriction in viral growth was dependent on interferon signaling, since loss of the interferon receptor, or its blockade in wild-type cells, resulted in high viral replication and virus-induced cytopathic effects. Astrocyte supernatant from TBEV-infected cells can restrict TBEV growth in astrocytes already 6 h post infection, the effect on neurons is highly reinforced, and astrocyte supernatant from 3 h post infection is already protective. CONCLUSIONS: These findings suggest that the combination of an intrinsic constitutive antiviral response and the fast induction of type I IFN production by astrocytes play an important role in self-protection of astrocytes and suppression of flavivirus replication in the CNS.


Assuntos
Astrócitos , Flavivirus/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Receptor de Interferon alfa e beta/metabolismo , Animais , Animais Recém-Nascidos , Antivirais/farmacologia , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/virologia , Biologia Computacional , Imunoglobulina G/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/virologia , Oxazinas/farmacologia , RNA Mensageiro/metabolismo , Receptor de Interferon alfa e beta/genética , Xantenos/farmacologia
12.
J Neuroinflammation ; 13: 22, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26819220

RESUMO

BACKGROUND: Although type I interferons (IFNs)-key effectors of antiviral innate immunity are known to be induced via different pattern recognition receptors (PRRs), the cellular source and the relative contribution of different PRRs in host protection against viral infection is often unclear. IPS-1 is a downstream adaptor for retinoid-inducible gene I (RIG-I)-like receptor signaling. In this study, we investigate the relative contribution of IPS-1 in the innate immune response in the different brain regions during infection with tick-borne encephalitis virus (TBEV), a flavivirus that causes a variety of severe symptoms like hemorrhagic fevers, encephalitis, and meningitis in the human host. METHODS: IPS-1 knockout mice were infected with TBEV/Langat virus (LGTV), and viral burden in the peripheral and the central nervous systems, type I IFN induction, brain infiltrating cells, and inflammatory response was analyzed. RESULTS: We show that IPS-1 is indispensable for controlling TBEV and LGTV infections in the peripheral and central nervous system. Our data indicate that IPS-1 regulates neuropathogenicity in mice. IFN response is differentially regulated in distinct regions of the central nervous system (CNS) influencing viral tropism, as LGTV replication was mainly restricted to olfactory bulb in wild-type (WT) mice. In contrast to the other brain regions, IFN upregulation in the olfactory bulb was dependent on IPS-1 signaling. IPS-1 regulates basal levels of antiviral interferon-stimulated genes (ISGs) like viperin and IRF-1 which contributes to the establishment of early viral replication which inhibits STAT1 activation. This diminishes the antiviral response even in the presence of high IFN-ß levels. Consequently, the absence of IPS-1 causes uncontrolled virus replication, in turn resulting in apoptosis, activation of microglia and astrocytes, elevated proinflammatory response, and recruitment of inflammatory cells into the CNS. CONCLUSIONS: We show that LGTV replication is restricted to the olfactory bulb and that IPS-1 is a very important player in the olfactory bulb in shaping the innate immune response by inhibiting early viral replication and viral spread throughout the central nervous system. In the absence of IPS-1, higher viral replication leads to the evasion of antiviral response by inhibiting interferon signaling. Our data suggest that the local microenvironment of distinct brain regions is critical to determine virus permissiveness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/patologia , Interferon Tipo I/metabolismo , Bulbo Olfatório/metabolismo , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos CD , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/genética , Hipocampo/citologia , Interferon Tipo I/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Bulbo Olfatório/patologia , Bulbo Olfatório/virologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Fatores de Tempo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
13.
J Virol ; 88(21): 12202-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122777

RESUMO

UNLABELLED: Vector-borne flaviviruses, such as tick-borne encephalitis virus (TBEV), West Nile virus, and dengue virus, cause millions of infections in humans. TBEV causes a broad range of pathological symptoms, ranging from meningitis to severe encephalitis or even hemorrhagic fever, with high mortality. Despite the availability of an effective vaccine, the incidence of TBEV infections is increasing. Not much is known about the role of the innate immune system in the control of TBEV infections. Here, we show that the type I interferon (IFN) system is essential for protection against TBEV and Langat virus (LGTV) in mice. In the absence of a functional IFN system, mice rapidly develop neurological symptoms and succumb to LGTV and TBEV infections. Type I IFN system deficiency results in severe neuroinflammation in LGTV-infected mice, characterized by breakdown of the blood-brain barrier and infiltration of macrophages into the central nervous system (CNS). Using mice with tissue-specific IFN receptor deletions, we show that coordinated activation of the type I IFN system in peripheral tissues as well as in the CNS is indispensable for viral control and protection against virus induced inflammation and fatal encephalitis. IMPORTANCE: The type I interferon (IFN) system is important to control viral infections; however, the interactions between tick-borne encephalitis virus (TBEV) and the type I IFN system are poorly characterized. TBEV causes severe infections in humans that are characterized by fever and debilitating encephalitis, which can progress to chronic illness or death. No treatment options are available. An improved understanding of antiviral innate immune responses is pivotal for the development of effective therapeutics. We show that type I IFN, an effector molecule of the innate immune system, is responsible for the extended survival of TBEV and Langat virus (LGTV), an attenuated member of the TBE serogroup. IFN production and signaling appeared to be essential in two different phases during infection. The first phase is in the periphery, by reducing systemic LGTV replication and spreading into the central nervous system (CNS). In the second phase, the local IFN response in the CNS prevents virus-induced inflammation and the development of encephalitis.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/mortalidade , Interferon Tipo I/imunologia , Animais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interferon/deficiência , Análise de Sobrevida
14.
J Proteome Res ; 13(2): 796-804, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24364512

RESUMO

Francisella tularensis is a highly infectious intracellular pathogen that has evolved an efficient strategy to subvert host defense response to survive inside the host. The molecular mechanisms regulating these host-pathogen interactions and especially those that are initiated at the time of the bacterial entry via its attachment to the host plasma membrane likely predetermine the intracellular fate of pathogen. Here, we provide the evidence that infection of macrophages with F. tularensis leads to changes in protein composition of macrophage-derived lipid rafts, isolated as detergent-resistant membranes (DRMs). Using SILAC-based quantitative proteomic approach, we observed the accumulation of autophagic adaptor protein p62 at the early stages of microbe-host cell interaction. We confirmed the colocalization of the p62 with ubiquitinated and LC3-decorated intracellular F. tularensis microbes with its maximum at 1 h postinfection. Furthermore, the infection of p62-knockdown host cells led to the transient increase in the intracellular number of microbes up to 4 h after in vitro infection. Together, these data suggest that the activation of the autophagy pathway in F. tularensis infected macrophages, which impacts the early phase of microbial proliferation, is subsequently circumvented by ongoing infection.


Assuntos
Autofagia , Microdomínios da Membrana/metabolismo , Proteômica , Tularemia/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular , Microdomínios da Membrana/química , Camundongos , Dados de Sequência Molecular
15.
Eur J Immunol ; 43(10): 2626-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23818011

RESUMO

Natural killer (NK) cells are key components of the immune system involved in several immune reactions, including the clearance of intracellular pathogens. When activated, NK cells rapidly secrete particular cytokines that activate innate immunity and facilitate development of adaptive responses. Conflicting reports on the role of NK cells during infection by Listeria monocytogenes can be found in the literature. Here, we demonstrate that during lethal infection by L. monocytogenes, activation of NK cells via the costimulatory molecule CD27 leads to excessive IFN-γ production. This impairs innate anti-bacterial host defenses by inducing downregulation of CXCR2 on granulocytes and consequently inhibiting their recruitment to the sites of infection. The use of antibodies to block CD27 signaling or to deplete IFN-γ was sufficient to rescue mice from lethal challenge by L. monocytogenes. Our findings contribute to a better understanding of the importance of CD27 signaling in activation of NK cells and should provide new ways of interfering with infections.


Assuntos
Granulócitos/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Feminino , Granulócitos/microbiologia , Imunidade Inata , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
16.
Proc Natl Acad Sci U S A ; 107(19): 8748-53, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421474

RESUMO

Balanced induction of proinflammatory and type I IFN responses upon activation of Toll-like receptors (TLRs) determines the outcome of microbial infections and the pathogenesis of autoimmune and other inflammatory diseases. Mast cells, key components of the innate immune system, are known for their debilitating role in allergy and autoimmunity. However, their role in antimicrobial host defenses is being acknowledged increasingly. How mast cells interact with microbes and the nature of responses triggered thereby is not well characterized. Here we show that in response to TLR activation by Gram-positive and -negative bacteria or their components, mast cells elicit proinflammatory but not type I IFN responses. We demonstrate that in mast cells, bound bacteria and TLR ligands remain trapped at the cell surface and do not undergo internalization, a prerequisite for type I IFN induction. Such cells, however, can elicit type I IFNs in response to vesicular stomatitis virus which accesses the cytosolic retinoic acid-inducible gene I receptor. Although important for antiviral immunity, a strong I IFN response is known to contribute to pathogenesis of several bacterial pathogens such as Listeria monocytogenes. Interestingly, we observed that the mast cell-dependent neutrophil mobilization upon L. monocytogenes infection is highly impaired by IFN-beta. Thus, the fact that mast cells, although endowed with the capacity to elicit type I IFNs in response to viral infection, elicit only proinflammatory responses upon bacterial infection shows that mast cells, key effector cells of the innate immune system, are well adjusted for optimal antibacterial and antiviral responses.


Assuntos
Mediadores da Inflamação/imunologia , Interferon beta/imunologia , Listeria monocytogenes/imunologia , Mastócitos/imunologia , Mastócitos/microbiologia , Salmonella typhimurium/imunologia , Receptores Toll-Like/imunologia , Ácidos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Compartimento Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon beta/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/microbiologia , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/ultraestrutura , Mastócitos/citologia , Mastócitos/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/ultraestrutura , Frações Subcelulares/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Transcrição Gênica/efeitos dos fármacos , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/imunologia , Vesiculovirus/ultraestrutura
17.
STAR Protoc ; 4(1): 102046, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853709

RESUMO

Bacterial membrane vesicles have emerged as gadgets allowing remote communication between the microbiota and distal host organs. Here we describe a protocol for enriching vesicles from serum and colon that could widely be adapted for other tissues. We detail pre-clearing of serum or colon fluids using 0.2-µm syringe filters and their concentration by centrifugal filter devices. We also describe vesicle isolation with qEV size exclusion columns and finally the concentration of isolated vesicle fractions for downstream analyses. For complete details on the use and execution of this protocol, please refer to Erttmann et al. (2022).1.


Assuntos
Microbiota , Animais , Camundongos , Membranas , Colo
18.
Front Immunol ; 14: 1270449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274797

RESUMO

Introduction: Typhoid toxin-expressing Salmonella enterica causes DNA damage in the intestinal mucosa in vivo, activating the DNA damage response (DDR) in the absence of inflammation. To understand whether the tissue microenvironment constrains the infection outcome, we compared the immune response and DDR patterns in the colon and liver of mice infected with a genotoxigenic strain or its isogenic control strain. Methods: In situ spatial transcriptomic and immunofluorescence have been used to assess DNA damage makers, activation of the DDR, innate immunity markers in a multiparametric analysis. Result: The presence of the typhoid toxin protected from colonic bacteria-induced inflammation, despite nuclear localization of p53, enhanced co-expression of type-I interferons (IfnbI) and the inflammasome sensor Aim2, both classic features of DNA-break-induced DDR activation. These effects were not observed in the livers of either infected group. Instead, in this tissue, the inflammatory response and DDR were associated with high oxidative stress-induced DNA damage. Conclusions: Our work highlights the relevance of the tissue microenvironment in enabling the typhoid toxin to suppress the host inflammatory response in vivo.


Assuntos
Salmonella enterica , Febre Tifoide , Camundongos , Animais , Salmonella enterica/genética , Mutagênicos , Dano ao DNA , Inflamação , Reparo do DNA
19.
J Immunol ; 183(5): 3229-36, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19667093

RESUMO

Type I IFN is a major player in innate and adaptive immune responses. Besides, it is involved in organogenesis and tumor development. Generally, IFN responses are amplified by an autocrine loop with IFN-beta as the priming cytokine. However, due to the lack of sensitive detection systems, where and how type I IFN is produced in vivo is still poorly understood. In this study, we describe a luciferase reporter mouse, which allows tracking of IFN-beta gene induction in vivo. Using this reporter mouse, we reveal strong tissue-specific induction of IFN-beta following infection with influenza or La Crosse virus. Importantly, this reporter mouse also allowed us to visualize that IFN-beta is expressed constitutively in several tissues. As suggested before, low amounts of constitutively produced IFN might maintain immune cells in an activated state ready for a timely response to pathogens. Interestingly, thymic epithelial cells were the major source of IFN-beta under noninflammatory conditions. This relatively high constitutive expression was controlled by the NF Aire and might influence induction of tolerance or T cell development.


Assuntos
Genes Reporter , Mediadores da Inflamação/fisiologia , Interferon beta/biossíntese , Interferon beta/genética , Animais , Linhagem Celular Transformada , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Genes Reporter/imunologia , Mediadores da Inflamação/metabolismo , Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H7N7/imunologia , Interferon beta/deficiência , Vírus La Crosse/genética , Vírus La Crosse/imunologia , Luciferases de Vaga-Lume/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Doença de Newcastle/genética , Doença de Newcastle/imunologia , Doença de Newcastle/patologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Timo/imunologia , Timo/patologia , Timo/virologia
20.
J Immunol ; 183(2): 1099-109, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19581626

RESUMO

Type I IFNs play a key role in linking the innate and adaptive arms of the immune system. Although produced rapidly in response to pathogens, IFNs are also produced at low levels in the absence of infection. In the present study, we demonstrate that constitutively produced IFNs are necessary in vivo to maintain dendritic cells in an "Ag presentation-competent" state. Conventional dendritic cells (cDCs) isolated from spleens of IFN-beta or IFNAR-deficient mice exhibit a highly impaired ability to present Ag and activate naive T cells. Microarray analysis of mRNA isolated from IFN-beta(-/-) and IFNAR(-/-) cDCs revealed diminished expression of two genes that encoded members of the heat shock protein 70 (Hsp70) family. Consistent with this observation, pharmacological inhibition of Hsp70 in cDCs from wild-type mice impaired their T cell stimulatory capacity. Similarly, the Ag presentation ability of splenic cDCs isolated from Hsp70.1/3(-/-) mice was also severely impaired in comparison to wild-type cDCs. Thus, constitutive IFN-beta expression regulates Hsp70 levels to help maintain dendritic cells in a competent state for efficient priming of effector T cells in vivo.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Regulação para Baixo , Interferon beta/fisiologia , Animais , Proteínas de Choque Térmico HSP70 , Fatores Imunológicos , Interferon beta/deficiência , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Baço/citologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa