Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338686

RESUMO

GT-00AxIL15 is a novel interleukin-15-based immunocytokine targeting a tumor-specific, glycosylated epitope of MUC1 (TA-MUC1). We characterized mode of action, pharmacokinetic (PK) and pharmacodynamic (PD) properties and investigated the relevance of TA-MUC1 binding for the concept of delivering IL-15 to solid tumors. In vitro pharmacology was analyzed in binding and cell-based assays. The in vivo PK profile and IL-15-mediated PD effects of GT-00AxIL15 were investigated in tumor-free mice. Tumor accumulation, immune infiltration and anti-tumor activity were assessed in TA-MUC1+ syngeneic and xenogeneic murine tumor models. GT-00AxIL15 was shown to specifically bind TA-MUC1 on tumor cells via its mAb moiety, to IL-15 receptors on immune cells via its IL-15 fusion modules and to FcγRs via its functional Fc-part. In vitro, NK, NKT and CD8+ T cells were activated and proliferated, leading to anti-tumor cytotoxicity and synergism with antibody-dependent cellular cytotoxicity (ADCC)-mediating mAbs. In vivo, GT-00AxIL15 exhibited favorable PK characteristics with a serum half-life of 13 days and specifically accumulated in TA-MUC1+ tumors. In the tumor microenvironment, GT-00AxIL15 induced robust immune activation and expansion and mediated anti-metastatic and anti-tumor effects in syngeneic and xenograft tumor models. These results support the rationale to improve PK and anti-tumor efficacy of IL-15 by increasing local concentrations at the tumor site via conjugation to a TA-MUC1 binding mAb. The tumor-selective expression pattern of TA-MUC1, powerful immune activation and anti-tumor cytotoxicity, long serum half-life and tumor targeting properties, render GT-00AxIL15 a promising candidate for treatment of solid tumors with high medical need, e.g., ovarian, lung and breast cancer.


Assuntos
Antineoplásicos Imunológicos , Neoplasias da Mama , Interleucina-15 , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais/metabolismo , Neoplasias da Mama/metabolismo , Modelos Animais de Doenças , Interleucina-15/metabolismo , Mucina-1/metabolismo , Distribuição Tecidual , Microambiente Tumoral , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia
2.
Front Immunol ; 14: 1219165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915564

RESUMO

Introduction: Chimeric antigen receptor-engineered T cells (CAR-Ts) are investigated in various clinical trials for the treatment of cancer entities beyond hematologic malignancies. A major hurdle is the identification of a target antigen with high expression on the tumor but no expression on healthy cells, since "on-target/off-tumor" cytotoxicity is usually intolerable. Approximately 90% of carcinomas and leukemias are positive for the Thomsen-Friedenreich carbohydrate antigen CD176, which is associated with tumor progression, metastasis and therapy resistance. In contrast, CD176 is not accessible for ligand binding on healthy cells due to prolongation by carbohydrate chains or sialylation. Thus, no "on-target/off-tumor" cytotoxicity and low probability of antigen escape is expected for corresponding CD176-CAR-Ts. Methods: Using the anti-CD176 monoclonal antibody (mAb) Nemod-TF2, the presence of CD176 was evaluated on multiple healthy or cancerous tissues and cells. To target CD176, we generated two different 2nd generation CD176-CAR constructs differing in spacer length. Their specificity for CD176 was tested in reporter cells as well as primary CD8+ T cells upon co-cultivation with CD176+ tumor cell lines as models for CD176+ blood and solid cancer entities, as well as after unmasking CD176 on healthy cells by vibrio cholerae neuraminidase (VCN) treatment. Following that, both CD176-CARs were thoroughly examined for their ability to initiate target-specific T-cell signaling and activation, cytokine release, as well as cytotoxicity. Results: Specific expression of CD176 was detected on primary tumor tissues as well as on cell lines from corresponding blood and solid cancer entities. CD176-CARs mediated T-cell signaling (NF-κB activation) and T-cell activation (CD69, CD137 expression) upon recognition of CD176+ cancer cell lines and unmasked CD176, whereby a short spacer enabled superior target recognition. Importantly, they also released effector molecules (e.g. interferon-γ, granzyme B and perforin), mediated cytotoxicity against CD176+ cancer cells, and maintained functionality upon repetitive antigen stimulation. Here, CD176L-CAR-Ts exhibited slightly higher proliferation and mediator-release capacities. Since both CD176-CAR-Ts did not react towards CD176- control cells, their response proved to be target-specific. Discussion: Genetically engineered CD176-CAR-Ts specifically recognize CD176 which is widely expressed on cancer cells. Since CD176 is masked on most healthy cells, this antigen and the corresponding CAR-Ts represent a promising approach for the treatment of various blood and solid cancers while avoiding "on-target/off-tumor" cytotoxicity.


Assuntos
Linfócitos T CD8-Positivos , Leucemia , Humanos , Antígenos Glicosídicos Associados a Tumores , Carboidratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa