RESUMO
The circadian clock is an endogenous oscillator, and its importance lies in its ability to impart rhythmicity on downstream biological processes, or outputs. Our knowledge of output regulation, however, is often limited to an understanding of transcriptional connections between the clock and outputs. For instance, the clock is linked to plant growth through the gating of photoreceptors via rhythmic transcription of the nodal growth regulators, PHYTOCHROME-INTERACTING FACTORs (PIFs), but the clock's role in PIF protein stability is less clear. Here, we identified a clock-regulated, F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 (CFH1), that specifically interacts with and degrades PIF3 during the daytime. Additionally, genetic evidence indicates that CFH1 functions primarily in monochromatic red light, yet CFH1 confers PIF3 degradation independent of the prominent red-light photoreceptor phytochrome B (phyB). This work reveals a clock-mediated growth regulation mechanism in which circadian expression of CFH1 promotes sustained, daytime PIF3 degradation in parallel with phyB signaling.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Relógios Circadianos , Fitocromo B , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Relógios Circadianos/fisiologia , Relógios Circadianos/genética , Fitocromo B/metabolismo , Fitocromo B/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ritmo Circadiano/fisiologia , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , LuzRESUMO
As photoautotrophic organisms, plants produce an incredible spectrum of pigments, anti-herbivory compounds, structural materials and energic intermediates. These biosynthetic routes help plants grow, reproduce and mitigate stress. HEXOKINASE1 (HXK1), a metabolic enzyme and glucose sensor, catalyzes the phosphorylation of hexoses, a key introductory step for many of these pathways. However, previous studies have largely focused on the glucose sensing and signaling functions of HXK1, and the importance of the enzyme's catalytic function is only recently being connected to plant development. In this brief Spotlight, we describe the developmental significance of plant HXK1 and its role in plant metabolic pathways, specifically in glucose-6-phosphate production. Furthermore, we describe the emerging connections between metabolism and development and suggest that HXK1 signaling and catalytic activity regulate discrete areas of plant development.
Assuntos
Glucose-6-Fosfato , Hexoquinase , Desenvolvimento Vegetal , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Fosforilação , Plantas/metabolismoRESUMO
Photoperiod is an annual cue measured by biological systems to align growth and reproduction with the seasons. In plants, photoperiodic flowering has been intensively studied for over 100 years, but we lack a complete picture of the transcriptional networks and cellular processes that are photoperiodic. We performed a transcriptomics experiment on Arabidopsis plants grown in 3 different photoperiods and found that thousands of genes show photoperiodic alteration in gene expression. Gene clustering, daily expression integral calculations, and cis-element analysis then separate photoperiodic genes into co-expression subgroups that display 19 diverse seasonal expression patterns, opening the possibility that many photoperiod measurement systems work in parallel in Arabidopsis. Then, functional enrichment analysis predicts co-expression of important cellular pathways. To test these predictions, we generated a comprehensive catalog of genes in the phenylpropanoid biosynthesis pathway, overlaid gene expression data, and demonstrated that photoperiod intersects with 2 major phenylpropanoid pathways differentially, controlling flavonoids but not lignin. Finally, we describe the development of a new app that visualizes photoperiod transcriptomic data for the wider community.
Assuntos
Arabidopsis , Fotoperíodo , Arabidopsis/genética , Estações do Ano , Análise por Conglomerados , Transcriptoma/genéticaRESUMO
SignificanceKarrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL). Karrikins likely require modification in plants to become bioactive. We identify a gene, KUF1, that appears to negatively regulate biosynthesis of KL and metabolism of a specific karrikin. KUF1 expression increases in response to karrikin or KL signaling, thus forming a negative feedback loop that limits further activation of the signaling pathway. This discovery will advance understanding of how karrikins are perceived and how smoke-activated germination evolved. It will also aid identification of the elusive KL.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Furanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Hidrolases/genética , Piranos/farmacologia , Arabidopsis/metabolismo , Plântula/genética , Plântula/metabolismo , Transdução de SinaisRESUMO
Hypocotyl elongation is controlled by several signals and is a major characteristic of plants growing in darkness or under warm temperature. While already several molecular mechanisms associated with this process are known, protein degradation and associated E3 ligases have hardly been studied in the context of warm temperature. In a time-course phosphoproteome analysis on Arabidopsis seedlings exposed to control or warm ambient temperature, we observed reduced levels of diverse proteins over time, which could be due to transcription, translation, and/or degradation. In addition, we observed differential phosphorylation of the LRR F-box protein SLOMO MOTION (SLOMO) at two serine residues. We demonstrate that SLOMO is a negative regulator of hypocotyl growth, also under warm temperature conditions, and protein-protein interaction studies revealed possible interactors of SLOMO, such as MKK5, DWF1, and NCED4. We identified DWF1 as a likely SLOMO substrate and a regulator of warm temperature-mediated hypocotyl growth. We propose that warm temperature-mediated regulation of SLOMO activity controls the abundance of hypocotyl growth regulators, such as DWF1, through ubiquitin-mediated degradation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
The Tubby domain, named after the TUBBY protein in mice, binds to phosphatidylinositol 4,5-bisphosphate. Arabidopsis has 11 Tubby domain-containing proteins referred to as Tubby-Like Proteins (TLPs). Of the 11 TLPs, 10 possess the N-terminal F-box domain, which can interact with SKP-like proteins and form SKP1-Cullin-F-box E3 ligase complexes. Although mice TUBBY has been extensively studied, plant TLPs' functions are scarcely detailed. In this study, we show that the Arabidopsis Tubby-like protein 6 (TLP6) and its redundant homologs, TLP1, TLP2, TLP5, and TLP10, positively regulate Arabidopsis immune responses. Furthermore, in an immunoprecipitation mass spectrometry analysis to search for ubiquitination substrates of the TLPs, we identified two redundant phosphoinositide biosynthesis enzymes, phosphatidylinositol 4-kinase ß proteins (PI4Kßs), PI4Kß1 and PI4Kß2, as TLP interactors. Importantly, TLP6 overexpression lines fully phenocopy the phenotypes of the pi4kß1,2 mutant, while TLP6 overexpression also leads to increased PI4Kß2 ubiquitination and reduction in its protein level in a proteasome-dependent manner. Most significantly, TLP6 overexpression does not further enhance the autoimmunity of the pi4kß1,2 double mutant, supporting the hypothesis that TLP6 targets the PI4Kßs for ubiquitination and degradation. Thus, our study reveals a novel mechanism where TLPs promote plant immune responses by modulating the PI4Kßs protein levels.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Animais , Camundongos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Citoplasma/metabolismoRESUMO
Insults to ER homeostasis activate the unfolded protein response (UPR), which elevates protein folding and degradation capacity and attenuates protein synthesis. While a role for ubiquitin in regulating the degradation of misfolded ER-resident proteins is well described, ubiquitin-dependent regulation of translational reprogramming during the UPR remains uncharacterized. Using global quantitative ubiquitin proteomics, we identify evolutionarily conserved, site-specific regulatory ubiquitylation of 40S ribosomal proteins. We demonstrate that these events occur on assembled cytoplasmic ribosomes and are stimulated by both UPR activation and translation inhibition. We further show that ER stress-stimulated regulatory 40S ribosomal ubiquitylation occurs on a timescale similar to eIF2α phosphorylation, is dependent upon PERK signaling, and is required for optimal cell survival during chronic UPR activation. In total, these results reveal regulatory 40S ribosomal ubiquitylation as an important facet of eukaryotic translational control.
Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Drosophila/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Fosforilação , Biossíntese de Proteínas/genética , Saccharomyces cerevisiae/genética , UbiquitinaçãoRESUMO
MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Histona Desmetilases com o Domínio Jumonji/genética , Meristema/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Meristema/genéticaRESUMO
Soybean yield is largely dependent on growth period. We characterized two growth period quantitative trait loci, Gp11 and Gp12, from a recombinant inbred population generated from a cross of wild (W05) and cultivated (C08) soybean. Lines carrying Gp11C08 and Gp12C08 tend to have a shorter growth period and higher expression of GmFT2a and GmFT5a. Furthermore, multiple interval mapping suggests that Gp11 and Gp12 may be genetically interacting with the E2 locus. This is consistent with the observation that GmFT2a and GmFT5a are activated by Gp11C08 and Gp12C08 at ZT4 in the recessive e2 but not the dominant E2 background. Gp11 and Gp12 are duplicated genomic regions each containing a copy of the soybean ortholog of PSEUDO RESPONSE REGULATOR 3 (GmPRR3A and GmPRR3B). GmPRR3A and GmPRR3B from C08 carry mutations that delete the CCT domain in the encoded proteins. These mutations were selected during soybean improvement and they alter the subcellular localization of GmPRR3A and GmPRR3B. Furthermore, GmPRR3A and GmPRR3B can interact with TOPLESS-related transcription factors, suggesting that they function in a transcription repressor complex. This study addresses previously unexplored components of the genetic network that probably controls the growth period of soybean and puts these loci into context with the well-characterized growth period-regulating E loci.
Assuntos
Domesticação , Genes de Plantas/genética , Glycine max/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Glycine max/crescimento & desenvolvimento , Fatores de Transcrição/fisiologiaRESUMO
Eukaryotic circadian clocks utilize the ubiquitin proteasome system to precisely degrade clock proteins. In plants, the F-box-type E3 ubiquitin ligases ZEITLUPE (ZTL), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1), and LOV KELCH PROTEIN2 (LKP2) regulate clock period and couple the clock to photoperiodic flowering in response to end-of-day light conditions. To better understand their functions, we expressed decoy ZTL, FKF1, and LKP2 proteins that associate with target proteins but are unable to ubiquitylate their targets in Arabidopsis (Arabidopsis thaliana). These dominant-negative forms of the proteins inhibit the ubiquitylation of target proteins and allow for the study of ubiquitylation-independent and -dependent functions of ZTL, FKF1, and LKP2. We demonstrate the effects of expressing ZTL, FKF1, and LKP2 decoys on the circadian clock and flowering time. Furthermore, the decoy E3 ligases trap substrate interactions, and using immunoprecipitation-mass spectrometry, we identify interacting partners. We focus studies on the clock transcription factor CCA1 HIKING EXPEDITION (CHE) and show that ZTL interacts directly with CHE and can mediate CHE ubiquitylation. We also demonstrate that CHE protein is degraded in the dark and that degradation is reduced in a ztl mutant plant, showing that CHE is a bona fide ZTL target protein. This work increases our understanding of the genetic and biochemical roles for ZTL, FKF1, and LKP2 and also demonstrates an effective methodology for studying complicated genetic redundancy among E3 ubiquitin ligases.
Assuntos
Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/fisiologia , Proteínas Repressoras/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Domínios Proteicos , Mapas de Interação de Proteínas , Proteínas Repressoras/genética , UbiquitinaçãoRESUMO
Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations.
Assuntos
Inibidores de Proteassoma/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Ubiquitinas/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Cromatografia Líquida , Células HCT116 , Homeostase/efeitos dos fármacos , Humanos , Mapas de Interação de Proteínas , Proteoma/química , Proteoma/efeitos dos fármacos , Espectrometria de Massas em Tandem , Proteína com ValosinaRESUMO
Spatiotemporal control of the formation of organ primordia and organ boundaries from the stem cell niche in the shoot apical meristem (SAM) determines the patterning and architecture of plants, but the underlying signaling mechanisms remain poorly understood. Here we show that brassinosteroids (BRs) play a key role in organ boundary formation by repressing organ boundary identity genes. BR-hypersensitive mutants display organ-fusion phenotypes, whereas BR-insensitive mutants show enhanced organ boundaries. The BR-activated transcription factor BZR1 directly represses the cup-shaped cotyledon (CUC) family of organ boundary identity genes. In WT plants, BZR1 accumulates at high levels in the nuclei of central meristem and organ primordia but at a low level in organ boundary cells to allow CUC gene expression. Activation of BR signaling represses CUC gene expression and causes organ fusion phenotypes. This study uncovers a role for BR in the spatiotemporal control of organ boundary formation and morphogenesis in the SAM.
Assuntos
Arabidopsis/genética , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Genes de Plantas , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Mutação , Fenótipo , Brotos de Planta/metabolismo , Transdução de SinaisRESUMO
The first described feedback loop of the Arabidopsis circadian clock is based on reciprocal regulation between Timing of CAB Expression 1 (TOC1) and Circadian Clock-associated 1 (CCA1)/late elongated hypocotyl (LHY). CCA1 and LHY are Myb transcription factors that bind directly to the TOC1 promoter to negatively regulate its expression. Conversely, the activity of TOC1 has remained less well characterized. Genetic data support that TOC1 is necessary for the reactivation of CCA1/LHY, but there is little description of its biochemical function. Here we show that TOC1 occupies specific genomic regions in the CCA1 and LHY promoters. Purified TOC1 binds directly to DNA through its CCT domain, which is similar to known DNA-binding domains. Chemical induction and transient overexpression of TOC1 in Arabidopsis seedlings cause repression of CCA1/LHY expression, demonstrating that TOC1 can repress direct targets, and mutation or deletion of the CCT domain prevents this repression showing that DNA-binding is necessary for TOC1 action. Furthermore, we use the Gal4/UAS system in Arabidopsis to show that TOC1 acts as a general transcriptional repressor, and that repression activity is in the pseudoreceiver domain of the protein. To identify the genes regulated by TOC1 on a genomic scale, we couple TOC1 chemical induction with microarray analysis and identify previously unexplored potential TOC1 targets and output pathways. Taken together, these results define a biochemical action for the core clock protein TOC1 and refine our perspective on how plant clocks function.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Relógios Circadianos , DNA de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Relógios Circadianos/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição GênicaRESUMO
Plants measure daylength (photoperiod) to regulate seasonal growth and flowering. Photoperiodic flowering has been well studied, but less is known about photoperiodic growth. By using a mutant with defects in photoperiodic growth, we identified a seasonal growth regulation pathway that functions in long days in parallel to the canonical long-day photoperiod flowering mechanism. This is achieved by using distinct mechanisms to detect different photoperiods: The flowering pathway measures photoperiod as the duration of light intensity, whereas the growth pathway measures photoperiod as the duration of photosynthetic activity (photosynthetic period). Plants can then independently control expression of genes required for flowering or growth. This demonstrates that seasonal flowering and growth are dissociable, allowing them to be coordinated independently across seasons.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ritmo Circadiano , Flores , Mio-Inositol-1-Fosfato Sintase , Fotoperíodo , Ritmo Circadiano/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Estações do Ano , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Mio-Inositol-1-Fosfato Sintase/genética , Mio-Inositol-1-Fosfato Sintase/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologiaRESUMO
Photoperiod-measuring mechanisms allow organisms to anticipate seasonal changes to align reproduction and growth with appropriate times of the year. This review provides historical and modern context to studies of plant photoperiodism. We describe how studies of photoperiodic flowering in plants led to the first theoretical models of photoperiod-measuring mechanisms in any organism. We discuss how more recent molecular genetic studies in Arabidopsis and rice have revisited these concepts. We then discuss how photoperiod transcriptomics provides new lessons about photoperiodic gene regulatory networks and the discovery of noncanonical photoperiod-measuring systems housed in metabolic networks of plants. This leads to an examination of nonflowering developmental processes controlled by photoperiod, including metabolism and growth. Finally, we highlight the importance of understanding photoperiodism in the context of climate change, delving into the rapid latitudinal migration of plant species and the potential role of photoperiod-measuring systems in generating photic barriers during migration.
Assuntos
Arabidopsis , Ritmo Circadiano , Ritmo Circadiano/genética , Fotoperíodo , Plantas/genética , Arabidopsis/genética , Reprodução , Regulação da Expressão Gênica de PlantasRESUMO
For nearly 100 years, we have known that both growth and flowering in plants are seasonally regulated by the length of the day (photoperiod). Intense research focus and powerful genetic tools have propelled studies of photoperiodic flowering, but far less is known about photoperiodic growth, in part because tools were lacking. Here, using a new genetic tool that visually reports on photoperiodic growth, we identified a seasonal growth regulation pathway, from photoperiod detection to gene expression. Surprisingly, this pathway functions in long days but is distinct from the canonical long day photoperiod flowering mechanism. This is possible because the two mechanisms detect the photoperiod in different ways: flowering relies on measuring photoperiod by directly detecting duration of light intensity while the identified growth pathway relies on measuring photosynthetic period indirectly by detecting the duration of photosynthetic metabolite production. In turn, the two pathways then control expression of genes required for flowering or growth independently. Finally, our tools allow us to show that these two types of photoperiods, and their measurement systems, are dissociable. Our results constitute a new view of seasonal timekeeping in plants by showing that two parallel mechanisms measure different photoperiods to control plant growth and flowering, allowing these processes to be coordinated independently across seasons.
RESUMO
The circadian clock is an endogenous oscillator, but its importance lies in its ability to impart rhythmicity on downstream biological processes or outputs. Focus has been placed on understanding the core transcription factors of the circadian clock and how they connect to outputs through regulated gene transcription. However, far less is known about posttranslational mechanisms that tether clocks to output processes through protein regulation. Here, we identify a protein degradation mechanism that tethers the clock to photomorphogenic growth. By performing a reverse genetic screen, we identify a clock-regulated F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 ( CFH1 ), that controls hypocotyl length. We then show that CFH1 functions in parallel to red light signaling to target the transcription factor PIF3 for degradation. This work demonstrates that the circadian clock is tethered to photomorphogenesis through the ubiquitin proteasome system and that PIF3 protein stability acts as a hub to integrate information from multiple environmental signals.
RESUMO
Brassinosteroids (BRs) are essential hormones for plant growth and development. BRs regulate gene expression by inducing dephosphorylation of two key transcription factors, BZR1 and BZR2/BES1, through a signal transduction pathway that involves cell-surface receptors (BRI1 and BAK1) and a GSK3 kinase (BIN2). How BR-regulated phosphorylation controls the activities of BZR1/BZR2 is not fully understood. Here, we show that BIN2-catalyzed phosphorylation of BZR1/BZR2 not only inhibits DNA binding, but also promotes binding to the 14-3-3 proteins. Mutations of a BIN2-phosphorylation site in BZR1 abolish 14-3-3 binding and lead to increased nuclear localization of BZR1 protein and enhanced BR responses in transgenic plants. Further, BR deficiency increases cytoplasmic localization, and BR treatment induces rapid nuclear localization of BZR1/BZR2. Thus, 14-3-3 binding is required for efficient inhibition of phosphorylated BR transcription factors, largely through cytoplasmic retention. This study demonstrates that multiple mechanisms are required for BR regulation of gene expression and plant growth.
Assuntos
Proteínas 14-3-3/metabolismo , Arabidopsis/metabolismo , Transdução de Sinais , Esteroides Heterocíclicos/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA , Regulação para Baixo/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esteroides Heterocíclicos/farmacologiaRESUMO
The agricultural pest Drosophila suzukii differs from most other Drosophila species in that it lays eggs in ripe, rather than overripe, fruit. Previously, we showed that changes in bitter taste sensation accompanied this adaptation (Dweck et al., 2021). Here, we show that D. suzukii has also undergone a variety of changes in sweet taste sensation. D. suzukii has a weaker preference than Drosophila melanogaster for laying eggs on substrates containing all three primary fruit sugars: sucrose, fructose, and glucose. Major subsets of D. suzukii taste sensilla have lost electrophysiological responses to sugars. Expression of several key sugar receptor genes is reduced in the taste organs of D. suzukii. By contrast, certain mechanosensory channel genes, including no mechanoreceptor potential C, are expressed at higher levels in the taste organs of D. suzukii, which has a higher preference for stiff substrates. Finally, we find that D. suzukii responds differently from D. melanogaster to combinations of sweet and mechanosensory cues. Thus, the two species differ in sweet sensation, mechanosensation, and their integration, which are all likely to contribute to the differences in their egg-laying preferences in nature.
Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Açúcares , Oviposição , SensaçãoRESUMO
Plants measure photoperiod as a predictable signal for seasonal change. Recently, new connections between photoperiod measuring systems and metabolism in plants have been revealed. These studies explore historical observations of metabolism and photoperiod with modern tools and approaches, suggesting there is much more to learn about photoperiodism in plants.